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DIRICHLET QUOTIENTS 
AND 2D PERIODIC NAVIER-STOKES EQUATIONS 

By Peter CONSTANTIN, Ciprian FOIAS, Igor KUKAVICA and Andrew J. MAJDA 

ABSTRACT. - We show that for the periodic 2D Navier-Stokes equations (NSE) the set of initial data for which 
the solution exists for all negative times and has exponential growth is rather rich. We study this set and show 
that it is dense in the phase space of the NSE. This yields to a positive answer to a question in [BT]. After an 
appropriate resealing the large Reynolds limit dynamics on this set is Eulerian. 
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1. Introduction and motivation 

Many partial and ordinary differential equations connected with fluid dynamics have 
the structure 

(14 ti + vAu + B(u, u) = f, 

where A is a closed operator on a suitable Hilbert space H, B(., .) is a bilinear form, 
and f E H is time independent. Examples of such equations are the Navier-Stokes 
equations (NSE), the Kuramoto-Sivashinsky equation, and the Ginzburg-Landau equation 
(see e.g. [T2]). 

Naturally, the simplest special case is when the nonlinear term B vanishes. In this case 
the spectral properties of A are intimately connected to the stable manifolds of (1.1). More 
precisely, assume for simplicity that A is a closed positive linear operator with a compact 
inverse, and let 0 < X1 < AZ < . . . be its distinct eigenvalues. Then, for every u. E H, 

u(t) = S(t)uo = epvtA u. - ;A-If 
> 

+ ;A-‘j 

is the solution of (1.1) with B = 0 such that u(0) = S(O)uo = ~0. Note that, for every 
u. E H, S(t)uo converges to the global attractor A = {A-’ f }. If 1 . 1 denotes the norm 
in the Hilbert space H, we define 

(1.2) IA S(W2 112 
M,=dU ~0 E N\d : lim sup 

t+--oo Jsyt)u# - 
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126 P. CONSTANTIN et ~11. 

We emphasize that S(t), ug is required to be defined for all I < 0. Then, for every II. E N, 

M, = 
C 

u. E H : ug - +.f E P,:,H 
71 

where P, denotes the orthogonal projector on the spectral space of A associated with 
{A,, . . . , A,,}. Note that M,, consists precisely of those solutions S(t)uo which exist for 
all t E R and whose norm increases slower than const . evxn ItI as t -+ -CC, i.e., 

(1.3) M,, = {u. E H : IS(t)uol = C~(c”~,‘i~l) its t i -cc}. 

The definitions (1.2) or (1.3) make sense for any equation of the form (1.1) where S(t) 
represents the solution map. However, in general, all one can expect is that M,, contains 
the global attractor. Indeed, one can prove that for the the Kuramoto-Sivashinsky equation 
and Ginzburg-Landau equation M,, = A, i.e., if a solution grows at most exponentially 
as t + -00, then it is necessarily uniformly bounded (see e.g. [K] and [DGHN]). It is 
thus quite remarkable that for the periodic 2D Navier-Stokes equations the situation is 
much closer to the linear case. 

In the present paper we develop a theory regarding the invariant sets M r,. In Section 3 
we show that the sets M, are rather rich: We prove that P,,M,, = P, H for every n. 
Obviously, this implies that the Hausdorff (and hence also the fractal) dimension of the 
set M,, intersected with any ball in H is at least dim P,H. We give a positive answer to 
the following question of Bardos and Tartar ([BT]): Is S(t)H dense for a fixed t > O? We 
prove that even more nt>() S(t)H is dense, however in a weaker topology. In Section 4 
we study the behavior ofkirichlet quotients ]A”“w,(t)]/]~(t)] for solutions u of the NSE 
as t -+ -CC and use them to obtain a precise rate of exponential growth of solutions 
as t -+ -cc. In Section 5 we study the dynamics on the invariant sets M ,L. We show 
that the normalized solutions ‘u(t) / Iu( t) 1 lead, as t + -00, to global solutions of the 
incompressible Euler equation. This enables us to introduce attractor-type sets which are 
invariant with respect to the Euler equation and attract the quotients ~(t)/]u(t)] when 
t + -CC for U(O) E M,,\A. In Section 6 we discuss another density type property of the 
invariant sets M,. We conclude the paper with a list of open problems. 

2. Functional form of the NSE and some known facts 

We consider the Navier-Stokes equations (NSE) on R = [0, L12 

dv 
iJt-7AL+(u.V)u+Vp=f. 

c . 1L = 0, 

Y. p 12-periodic : 
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where u: R2 --+ R2, p: R2 + R are unknown functions, and v > 0, L > 0, and f E L2(R)2 
(which is R-periodic and so f = 0) are given. We introduce spaces H and V as the 
closures of 

21 E L2(R)2 : v is an R-periodic trigonometric polynomial, 0.~ = 0 in Q, 

in the (real) Hilbert spaces L2(Ci)2 and H’(n)‘, respectively. The sets H and V are also 
Hilbert spaces with respective scalar products 

u,v E H 

and 

The corresponding norms are ]u] = (u, u)li2, for u E H, and ]]u]] = ((u, u))~/~, for u E V. 
By the Rellich imbedding theorem, the natural inclusions ir: V -+ H and i2: H --+ V’ are 
compact, V’ being the dual of V. 

Let PL: L2 (a)” -+ L2(Q)2 be the orthogonal projection (called the Leray projector) with 
the range H, and let A = -PLA be the Stokes operator, which is a positive operator in H 
with the domain of definition D(A) = H”(0)” n V. Introducing B(u, v) = PL((u . V)v) 
and ti = du/dt, the NSE can be written as 

(2.1) ti + vAu + B(u, u) = f, 

where we replaced PLY with f. This equation is the functional form of the NSE, and 
it is understood in V’. 

Classical theorems imply that, for every uo E H, (2.1) has a unique solution 
u(t) = Spa for t > 0, which satisfies u(0) = uo and u E Cb([O, 03)~ H) C? 
Cr,,((O,oo), V) tl Lfo,([O, m),V). (We always assume f E H.) If the solution u(t) 
exists also for t E [-to, 01, where to > 0, then it is still uniquely determined by 2~~ = u(0) 
(see [BT] or [CF, Theorem 12.21); therefore, we still denote its value u(t) at t E [-to, 0] 
by S(t)uo. Also, for any to >_ 0, the solution operator S(to): H -+ H is continuous; 
similarly, S(to): V + V is continuous. 

Now, we recall some spectral properties of A. First, A is a positive operator with 
eigenvalues (kf + @)(~TT/L)~ where kl, ka E N and k; + lci # 0. We arrange them in 
increasing order 

27T 2 

( > 
- 
L 

= Xl < x2 < ‘... 

In particular, the identity ]]u]] = IA1/2~( (U E V) implies the Poincare inequality 

(2.2) 11412 2 a42 > u E v. 
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An important property regarding the spectral gaps is 

(2.3) limsup (&+i - X,) = 00, 
1L”oO 

(see [E] or [RI). Also, note that 

and 

(2.4) 

x 
27r 2 

n+1-A,. 2 y = Xl, 
( > 

nEN 

lim X, = co. n.1c.c 

Regarding the bilinear form B, we will need the inequalities 

(2.5) IF+, 4, w>I I CIUI~‘~ 11411’2 Ilvll 1~1~‘~ ll~ll~‘~ . u, v, w E v 
and 

(2.6) (A-1’2B(~,~)I 5 C]ZL]~‘~ llt~ll~‘~ 1~)~‘~ ll~l)~‘~ , u,v E v. 

Also, we will use the identities 

(2.7) (m44 = 0 > UEV 

and 

(2.8) (B(u, u). Au) = 0 , u E D(A). 

Both can be obtained using integration by parts (see e.g. [CF]). The identity (2.7) implies 

(2.9) 

which, because of (2.2), shows that 

(2.10) 

If u is defined on some interval [to, oc), the Gronwall lemma gives 

(2.11) (u(t)12 5 IU(t0)12e-vX1(*-to) + $(l - e-h(t-to)) i t > to : 

also, 

(2.12) Iu(t)l” 2 JU(t0)12eNto-t) _ M&(ti;-~) - 1) . t F to, 
1 

provided u is defined on [t, to]. The inequality (2.11) shows that (d/dt)(u(t)12 < 0 
provided /u(t)] > If]/~x,. Similarly, (2.8) implies 

(2.13) ;&II2 + .Qu12 = (f, Au), 
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which gives 

and thus 

(2.14) Ilu(t I l140)l12e-vX1t + 

The NSE have a global attractor 

(2.15) 

A= 2~~ E n S(t)H : limsup Is(t)~~l < 00 
t>o t--t-cc 

= 
C 

u. E f-j s(~)H : Is(t)uol 5 $4 E R} 
t>o 

t I ={uoEnS(I)H:llS(t)uoll<~,tFW 
t>o 1 

which is the smallest compact subset of H which attracts all the solutions. Global attractors 
have been studied extensively in [BV], [CF], [HI, and [T2]. The following properties will 
be needed: 

(i) A is a nonempty, compact, connected subset of H ; 
(ii) S(t)A = A for t > 0; 

(iii) d&A) < 00, where cl~ denotes the fractal dimension ([CFT], [FT]). 
See [CF] or [Tl] for detailed treatments of the NSE. 

3. Density of trajectories of global solutions 

Every solution u(t) = S(t) ~0 of (2.1) defined for all t E R’ is called a global 
solution. Clearly, uo E H belongs to a trajectory of a global solution if and only if 
u. E &,. S(t)H = L7. Also, A c 4, which shows that the union of all trajectories of 
global s&tions is nonempty. 

It is illustrative to consider again the equation 

briefly discussed in the introduction. For every uo E H there exists a solution 
u(t) = S”“(t)uo = epvtA (UO - (l/.v)A-‘f) + (l/v)A-‘f such that u(0) = uo. This 
solution is global if and only if 

u. E lp” = 
C 

uo E H : ug - fA-‘f E n D(eaA)}; 
N>O 

where D(eaA) is the domain of definition of the operator eaA. Note that Glin is dense in H. 
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The following theorem, which treats the NSE case, is the main result of this section. 

THEOREM 3.1. - The set G, which is the set of all u. E H for which S(t),uO is a global 
solution, is dense in V’. 

In [BT] Bardos and Tartar conjectured that, for every to > 0, S(to)H is dense in H; 
Theorem 3.1 shows that S(t,)H (and even E = n,,,, S(t)H) is dense in H equipped - 
with V’ topology. 

The main objects of study in this paper and in particular in the proof of Theorem 3.1, 
are the sets 

M, = “u ug E G\d : lim sup IIw)'ILol12 < At 
t&--o= pyt)uo12 - 

Clearly, we have 

and 

S(t)M,, = M, 5 t>o, 7aEr-v 

,ASMIEM~~‘... 

If MF are the analogous sets corresponding to the linear case, then 

Mx” = 
1 

u. E H: u. - ;A-‘f E P,H , 
I 

where P,, is the orthogonal projector on the spectral space of A corresponding to 
X1, AZ,. . , A,. Note that lJ,“=, Mt” is dense in H. 

Regarding the NSE case, we will show that lJ,“=, M, is dense in H with the topology 
of V’. The norm in V’ is lAp1i2 . I. 

Theorem 3.1 will be proven after we establish a series of auxiliary results. 

LEMMA 3.2. - Let Q E (0,l) and T > 0 be arbitrary, and let u be a solution of the NSE 
such that 

(3.1) WI > Ifl 
v(X,+l - X,)min{a, 1 - a} ’ 

t E [O,T). 

If u(O) E V and 

Il40>II” - I aX, + (1 - “)X,+1 = A,,, 
I~(0>l” 

for some n, then 

(3.2) 
IIWI” < A 
[u(t)12 - nIL,* ’ t E 10, Tl 

and 

(3.3) lu(t)12 L ( Iu(o)~~ + &) e-4vXn+t - & , t E LO, Tl. 

Remark 3.3. - Lemma 3.2 and Section 2 obviously imply the following facts: 
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(a) If u. E M,,, and (~01 2 2(f(/vXi, then there exists a unique to = to(‘uo) 2 0 such 
that JS(ta)~u) = 2(f\/~xi, 

and 

(b) If UC, E M,\A and 

for some T E W, then 

0 lIW~“l12 A, + An+1 
IS@)uol2 5 2 ’ 

t E [O&]. 

t 5 T. 

Proof of Lemma 3.2. - Assume first u(0) E D(A), and let r)(t) = ~(t)/(~(t)(. After 
some calculations, we obtain from (2.9) and (2.13) 

;~ll~l12 + 44 - 114”)4’ = ($ (A - 11”112)~~) 

< x + xi(A - [Iu(~~)Y!~‘. 
- 2vjul2 2 

Hence, 

& + +A - 1l~11”)~/’ 5 G > t E [O,T]. 

Since 
U-44> (pll,i~lW)l~l, XER, TIED(A) 

we get 

(3.5) 

If Ilw(to)l12 = ~n,cH for some to E [0, T), then 

&21t=t, 5 vl,1&2 - 21(X,+1 - A,)2(min{a, 1 - a})” 

by (3.5). The right hand side is negative by (3.1), so (3.2) follows. 
In order to prove (3.3), we use (2.9) and (3.2): 

-$# = -24Ju))2 + 2(f, u) 2 -4YXn,&uJ2 - g- 
n>e 

and (3.3) follows. 
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Now, assume u(0) E V, and fix E E (O,T/2). There exist 6’: t” E (0: F) such that 
cy - t” > 0, I E D(A), )Iu(F’)~/~ 5 &L,(y--F~~ , and 

lu(t)l > lfl 
7/X1min{n - F”, 1 - (a - 6”)) ’ 

t E [E’, T - F’]. 

Then ((v(t)112 5 A,,,-,)J for t E [t’, T - E’] by the first part of the proof. As we let t + 0, 
we get (3.2), while (3.3) directly follows from (3.2). 0 

We recall that P, is the orthogonal projector in H on the spectral space of A 
corresponding to the eigenvalues Xi; X2: . . , X, ; let also QIL = I - P,, 

LEMMA 3.4. - If 

.for some uo E V and n E N, then (QnuO~* 5 y7LJPnu012 where yll 
(A n+l - A,), and 

luo12 5 x 2x’“1A (P&12. 
71+1 R 

Proof qf Lemma 3.4. - We have 

(A n+1 + w 

lQn~ol* 5 &Qn~oll* 5 &ll~ol12 I “;I Xn+1 IP,uo12 + xn2:,;+1 IQ,uO/* n+1 
and both assertions follow. 0 

LEMMA 3.5. - Let po E P,H for some n. Then, for every to > 0, there exists vo E P,H 
such that P,S(to)vo = PO. 

For the proof we will need, in addition to the previous two lemmas, the following 
well-known fact: 

THEOREM 3.6 (Brouwer). - Let B(r) E R” be a closed ball with center 0 and radius r. rf 
g: B(r) -+ B(r) is a continuous mapping, and @g(z) = zfor all x E ~B(T), then g is onto. 

Proof of Lemma 3.5. - Let I,,(T) = {u. E P,H : I%L~/ 2 r}. We will first show that 
there exists 

(3.7) To > ifl 
- VA1 

such that 

(3.8) IPnS(t)W > IPol > uo E rrL(To) , t E [0,to]. 

It is sufficient only to consider the case IpO I > 2lfl/~x,. Choose any u. E P,,H such that 
1~0 1 > [PO/. It follows from (2.10) that there exists 

i 
WI I = min ~0 > 0 : IP~S(~o)uol = x > 0. 

1 1 
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Note that ]]u~]]/]uo]” 5 (X, + X,+,)/2. Hence, by Lemma 3.2 (with cy = l/2), 

and 
IfI2 IS(t)uO(2 2 IU0(2e-4vA”+lt - - 

821~x2 ’ t E Pd’2Lo)l. 
n 

Lemma 3.4 now implies ]QnS(t)~e12 5 ynlPnS(t)uo12, for t E [O,T(UO)], whence 

We fix any r. which satisfies (3.7) and 

(3.10) IfI2 
8v2X2 > > lPo12. 

n 

Let ]~a] 2 ro, and set t = I in (3.9): 

= Ipns(~o)uo(2 2 - 

This and (3.10) imply to < r(ua). Therefore, (3.9) holds for i; E [O,to], and (3.8) follows 
from (3.9) and (3.10). 

In order to apply Theorem 3.6, we will find a suitable g: P,H -+ P, H. First, we 
choose a continuous function 0: R + R such that d(z) = 1 for z 5 r-0, and H(z) = 0 
for CC 2 2ro. Define 

duo) = f3(~(l~ol)to)uo 2 u. E P,H. 

Note that g(BH(2ro) n P,H) & BH(2ro) n P,,H (where BH(~) = {UO E H : 1~01 5 ~1) 
by (3.7) and by 

s(t)BH(r) c By?-) > r>U! 
- VA1 ? t 2 0. 

Also, g is continuous, and it satisfies g(uo) = uo if ]~a] = 2~0. By Theorem 3.6, there 
exists wo E P,H such that g(wa) = pa. Now, because of (3.8), we have ]vo] 5 ro; thus, 
.Y(‘uo) = PnS(to)uo = PO. 0 

In the next lemma we provide the main ingredient for the construction of global solutions: 

LEMMA 3.7. - Let ul, u2, . . . E H, and let tl > t2 > t3 > . . be such that 
lim,,m t,, = --00. Suppose that S(t)uj is a solution for t E [tj, CO). Then the following 
two statements hold: 
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(a) If there is i E R such that lim SU~~+~ [(S(t)~k(/ < oci for all 1: 5 i, then there exists 
uSW E 4 and a subsequence {TL~,}:~ of {u~}P& such that 

(3.11) lim IS(t)uk, - S(t)u,l = 0 ! t E R. 
.i-- 

(6) ~7 

(3.12) lbkl i hf 7 kEN 

for some constant M, and if 

(3.13) IWk)UkI L WI/4 . IkEN 

with 

(3.14) IIq~k)%l12 5 xTL +2ATb+1 IS(t&/2 ( kEN 

for some fixed n, then there exists u, E M, and a subsequence {~k,}~~ of {uk}& 
such that (3.11) holds. 

In the proof we will need the following elementary facts: 

Remark 3.8. - If {ok}& is a bounded sequence in V, and if limk+oo lull - uO( = 0 
for some ‘u. E H, then ~0 E V and lluoll 2 liminfkia IIukll. Likewise, if {u~}T=~ is 
a bounded sequence in V, and if lirnk-+a IA-1/2(~k - ~0) I = 0 for some uo E V’, then 
u. E V and ll’l~oll < liminfk,, IIukII. 0 

Proof of Lemma 3.7. - (a) Since the imbedding il: V -+ H is compact, we may use the 
Cantor diagonal process to find a subsequence {ul~~}390,~ of {uk}rzl such that the limits 

(the limits being taken in H) exist, and such that tk, 2 t” for j E N. Since S(t): H --+ H 
is continuous for every t 2 0, we get 

vi = s(tkt - tk,)?+ , jsi, i,j E N. 

Letting U, = S(-tk,)‘U1, we obtain 

s(-t&j = ‘t& ~ j E N. 

Finally, (a) follows from continuity of S. 
(b) Without loss of generality, we may assume M > Ifl/vX1. First, fix Ic E N. As in 

Remark 3.3(a), there exists a unique Qk > tk such that IS(o!k)uk( = 2lfl/~Al, 

(3.15) 

and 

(3.16) II~w-412 5 X7X +2A’+1 IS(t)Uk12 , t E [tk, ak]. 
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Moreover, (3.6), (3.13), and (3.14) imply 

(3.17) 

where Cr, C2, . . are various constants. On the other hand, (2.14) and (3.16) give 

(3.18) 

Note that an upper bound on (Yk is 

which can be obtained from (3.12), (3.19, and (2.11). By this estimate, together with 
(3.16) and (3.17), we get 

This and (3.18) yield 

IlS(t)ukl12 5 max(C2, Cse-4vx~+1(t--tAf)} , t > tk. 

So, the assumptions of Lemma 3.7(a) are satisfied. Hence, we get (3.11) for U, E 4 and 
a suitable subsequence {?&,},“,t of {uk}p=r. If hminfk,, CVI, = --WI, then (3.11) and 
(3.15) imply (S(t)~,l 5 2lfj/vXr for t E Iw, and thus U, E A. If on the other hand 
lim inf k-too @k = &c > --a, Remark 3.8, together with (3.11) and (3.16), gives 

Ils(t)u,ll” 5 xn tzxL+l IS(t)u,l” , t 5 am 

and thus again u, E M,. 
Theorem 3.1 will be an easy consequence of the following lemma: 

0 

LEMMA 3.9. - If po E P,H, for some n, then there exists a global solution S(t)u, 
such that: 

(a> u, E M,; 
(b) Pnu co = PO; 
(cl IQnuml I max{2/fIl~~~,~~‘“lpol} where x = (&+I + &)/(A,+, - k,). 
Before the proof, we will show that Theorem 3.1 is a direct consequence of Lemma 3.9: 

JOURNAL DE MATHBMATIQUES PURES ET APPLIQUGES 



136 P. CONSTANTIN ef d. 

Proof of Theorem 3.1. - Let 7~~ E H be arbitrary. For any 11 E N, Lemma 3.9 provides 
u,, E H for which S(t) U, is a global solution, P7L~~7, = PT,~~,o, and 

All these facts imply 

for all rl. By virtue of (2.3) and (2.4), we obtain liminf,,,, IA-1/2(z~,, - u~~)[ = 0, and 
the theorem is proven. 0 

Proof qf Lemma 3.9. - First, note that (c) follows from (a) and (b): If Iu,I 5 2/f//7/X1, 
then IQnuool 5 Ju,I < 2(fl/vXr. If on the other hand (u,) > 2lfl/vxi, we get 

by (a) and Remark 3.3(a). Lemma 3.4 and (b) then complete (c). 
It remains to establish (a) and (b): Choose a sequence 0 > ti > t2 > such that 

limk--tcw tk. = -cc. By Lemma 3.5, there exist ‘ul, u2, . . E H and yl, y2. . . . E P,, H 
such that 

and 

(3.19) PJLk. = p(J . kE:N 

Consider the following sequence of solutions: 

Uk(t) = S(t)ul, . t > tk.. 

We consider two cases: 

Case 1: lykj < 2lfl/i7xr for infinitely many Ic E N. 
By passing to a subsequence, we may assume 

lpkl 5 a(fi 
VA1 . 

k E iw. 

Fix k E NJ, and note 

Il~k(h~)ll = Ml I xy21pkl < q. 

TOME 76 - 1997 - No 2 



DIRICHLET QUOTIENTS AND 2D PERIODIC NAVIER-STOKES EQUATIONS 137 

The inequality (2.14) then gives IlUk(t)II 5 2XA’21fl/~Xi for t > tk whence 

(3.20) 

According to Lemma 3.7, we may, by passing to a subsequence, assume that 

(3.21) iimrn \uk(t) - S(t)bl = 0 , tElW 

for some U, E G’. Now, (3.19) and (3.21) imply (b), while (3.20) and (3.21) show that 
IS(t)u,I 5 2X~‘21jl/~X~‘2 for t E R. Because of (2.15) we get U, E A and thus (a). 

Case 2: l~kl 2 2lf(/vXr for infinitely many k E N. 
By passing to a subsequence, we may assume 

luk(tk>l = IPk( 2 a(fl 
VA1 ’ 

k E N. 

Note that, for each k E N, either (uk\ < 2lf(/vXt or \u~I > 21fl/r/X1 in which case 
IIu~))~/Iu~(~ < (X, + x,+,)/2 by Lemma 3.2. Thus, 

due to Lemma 3.4. Since also 

IIwtk)ll” _ llP!J2 < x 
iuk@k)i2 lPk12 - n ’ 

kEN 

the assumptions of Lemma 3.7(b) are fulfilled. By passing to a subsequence, we obtain 
U, E M, such that (3.21) holds. So, (a) is valid, and (b) follows from (3.19) and (3.21).0 

Remark 3.10. - At this point, we are unable to prove that G, which is the set of initial 
data which lead to a global solution, is actually dense in the norm ) . I. We can however 
show that we have 0 E 6, where the closure is taken in H. 

Let t > 0 be arbitrary. Choose n so that 

and 

(3.22) dim P,H > OF. 

We claim that there exists ua E M,\A such that luol 5 c. Indeed, suppose that this is 
not true. Then, by Remark 3.3(b), 

(3.23) ll~ol12 < An + An+1 

Iuo12 - 2 ’ 
uo E M,\A 
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and 

(X24) 

Consider the set 

P. CONSTANTIN Pt d. 

S = p E P,,H : lp)’ 5 1 
(A n+l - Mf2 

2x 
?,+I > 

Note that PTIMn > S and P,, (M,, \A) n S = lil : The first fact follows from Lemma 3.9, 
while if uO E M,,\A, we have by Lemma 3.4, (3.23), and (3.24) 

Hence, P,,A > S, and d,(S) = dim I:,H contradicts (3.22). cl 

4. Further properties of the invariant sets M, 

For 11 = 1:2,. . ., let 

Also, recall that BH(r.) = {u,,, E H : IuO/ 5 7.). 

THEOREM 4.1. - For each u E N, M )I is a connected, locally compact subset qf H, and 

(4.1) P,,M,, = P,H ; 

Prooj: - The equality (4.1) is already contained in Lemma 3.9, while (4.2) follows from 
Remark 3.3(a), (2.1 I), and (2.15). It is also easy to check that every S-invariant set which 
includes A is connected. 

Since A is compact (in H), it only remains to check that every sequence u~,u~. . E 
M,,\A such that 

for some M, has a subsequence converging to an element in M,,. Due to 
limti-x IS(t)ukl = ec for k E fV, we can find a sequence tl > t2 > t3 > . such 
that limlrioc tk. = --3o and infk,N IS(tn.)ukl 2 2lfl/.~,Ir. An application of Lemma 3.7 
concludes the proof since (3.14) follows from Remark 3.3(a). 0 

THEOREM 4.2. - [f u(t) = S(f)ug (t E R) is a global solution (i.e., 7~0 E G), and (f 
uug $! A, then exactly one qf the ,following two possibilities occurs: 
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(4.4) 

in which case limt+-oo (loglu(t)))/)t) = cc. 
This theorem readily yields the following new characterization of the invariant sets M,, : 

COROLLARY 4.3. - For each n E N, we have 

M, = {u. E 4 : IS(t)uol = C3(e(1+t)VXnlti) as t -+ -ca,‘d.e > 0) 

= {u. E Cj : IS(t)uo( = O(ev(X~+X~+1)ltJi2) as t + --co} 

E {vX1,vX2,. . .,vX,} 

> 
. 

Proof of Theorem 4.2. - For simplicity, we introduce v(C) = u(t)/lu(t)). Lemma 3.2 
shows that, for any a 2 0, liminft+-o, Ilw(t)() 5 a implies limsup,,-, Ilw(t)ll 5 a. 
Therefore, limt,-, Ilw(t)II E [0, co] exists. 

Suppose that this limit is finite. Note that limt+-oo ju(t) 1 = cc since u. $ A ; therefore, 
(3.5) implies 

This gives (4.3) for some n. 
Assume (4.3), and fix E > 0. There exists to E R such that 

(1 - E)L I llWl12 I (1 + t)k , t < to. 

Therefore, by (2.9), 

(4.5) $lu12 = -2Vl(V])2)U]2 + 2(f, u) 

5 -2(1 - t)zAJU)2 + 2]f] JUJ 

IfI2 < -2(1 - t)vX,]u12 + EVX,JU]2 + --&- 
n 

= -(2 - 3c)vX,]u12 + s ) t I to 
n. 
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and similarly 

From (4.5) and (4.6) it follows 

( > I-; vX,<liminf 1% IW I < limsup log(i(‘)l < (I + ;),,,. 
t---DCI ItI - t+--03 - 

Letting t -+ 0, we get lim,,-, (log lu(t)l)/[tl = vX,. 
Now, assume (4.4). For each n E N and t > 0, there exists to E Iw such that 

IlWll” 1 (1 - t)A, ! t 5 to. 

As above, 

lirn inf log lu(t) I 
t--1-m ItI > 1-F VA,. 

( > 
Since n E N and E > 0 were arbitrary, we obtain lim+-m (log Iu(t)l)/ltl = 00. cl 

If u is a global solution such that u(O) $ A and limt.+oo ~l~(t)~~~/Iu(t)~~ < co, then 
Theorem 4.2 guarantees that ~~~(t)((~/Iu(t)~~ and logIu(t)l/Jtl converge to X, and vX, 
respectively, for some 72, as t -+ -co. The next theorem estimates the convergence rates 
of both quantities. 

THEOREM 4.4. - If u is a global solution such that u(O) $ A, and if 
limt,-, ll~(~>l12/Iw2 = At f or some n, then the following statements hold: 

(a) We have 

(4.7) 

and 

(4.8) 

( lbW12 lnns~p lu(t)12 - X, edvXlt < 00 
> 

hmj:f 
( 

IWll” ____ - A,, ItI > -cm. 
b(t) I2 > 

(6) For every p > 1, 

lnnrnu,p (u(t)(e”x-t < cxz 

ljmjr&f /u(t)] Itlbevx"t > 0. 
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Theorem 4.4 clearly implies the following improvement of the first characterization of 
M,n given in Corollary 4.3: 

COROLLARY 4.5. - For each n E N, we have 

M, = {uO E G : lS(t)uoj = O(eVX”ltl) as t -+ -w}. 

Proofof Theorem 4.4. - Denote w = u/\u~, and fix t E (0,1/2). 
(a) Choose to E R’ so that (u(tu)J = 2jfl/vAi. Then (2.12) implies 

(4.11) lu(t)12 1 cqePXlt ) t I to, 

where C, = (3)f~2/~2X~)evX~t~. Integrating (3.5) between -cc and t and using (4.11), 
we obtain 

(4.12) 

since limt--co IJw(t)l(2 = A,. This gives (4.7). 
Now, choose to E W so that 

(b-1 + w2 L llw))2 L: (%I + &+1)/2 , t I to 
and (4.11) hold. Then y = l)‘u112 - A, satisfies 

VI” 
G(t) + q’(t) 5 V(UO(~ 5 C6evX1t ' t 5 to. 

We distinguish three possibilities: 

Case 1: There exists ti E &! such that y(t) 2 -(Cs/c~)1’2evX1t’2 for t 5 ti. 
Then (4.13) implies 

(4.14) G(t) + (1 - +Y2(t> i 0 

for t 5 tl whence 

1 
Iyct) 2 -(l - E)V(tl - t) - y(t$’ ’ 

t 5 t1 

and (4.8) holds. 

Case 2: There exists tl E R such that y(t) 1 -(C~/cy)1/2evX1t/2 for t 5 tl. 
In this case (4.8) follows immediately. 

Case 3: None of the cases 1 or 2 occurs. 
Let tl < t2 < to be such that 
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and assume that when t = tl or t = t’~, we have the equality sign. Then we have (4.14) 
for t E [tr, tz], and thus 

y(t) > - (1 - t)Y(tz - t) + f,,,/C)‘:‘pYW2 T 
f E [f&]. 

Choose tb < min{O,tO} so that 

(1 - c)zA + g ( > l/2 
e--YX1t’2 2 0 ) t 5 t;. 

Then 

provided tr and t2 are chosen so that t2 5 tb. This proves that in Case 3 

for a suitable ti < t:, , and (4.8) is established. 
(b) Using (2.9), we get 

;& + 41412142 = Lf,u) L -IfI 14 

which because of (4.12) leads to 

(4.15) 

Then 

where 
a(t) = v&t + 3evx1t. 

x1 

Using the estimate J(C,s/Xl)evX1t ) 1. Cr for t 5 to, where C7 is a suitable constant, 
we obtain 

Iu(t)l <_ Cse-vx”t i t 2 to 

which concludes the proof of (4.9). 
Let p > 1 be arbitrary. The proof of (4.8) shows that 
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for a suitable to < 0 (possibly different from above). Similarly as we obtained (4.1% we get 

t 5 to. 

Therefore, 

Wle VLt+tilogltl 2 Ju(tl)le~~~~lfA% It11 _ 

2 Mtl)le vLtl+P 1% IfI I 

provided t 5 tl 5 to. We may assume that 
plogltj < -vXlt/4 for t <_ to. Then 

if t 5 tl 5 to. The last expression is positive for small enough tl, and (4.10) follows. IJ 

5. Eulerian dynamics on the invariant sets M, 

We will consider certain weak solutions of the Euler equation ti+B(~, u) = 0. A function 
‘u is a weak solution of the Euler equation on an interval I if 1~ E LEJI, V) f’ C(1, V’) and 

i 

ts 

(5.1) u(t2) - u(h) = B(U(T), u(7)) d7 1 t1. t2 E I 
- t1 

in V’. Note that u E Lr)(I, V) implies the existence of the integral in V’. Therefore, (5.1) 
implies that u: I -+ V’ is locally absolutely continuous. Using the Gale&in approximation, 
one obtains the following existence theorem: For every initial datum uo E V there exists 
a solution ?L of the Euler equation on I = W such that u(0) = Q and 

IJO’ 11~(~)112 dT1 I Itl Ilwll” 
for every t E R. Also, one can prove the following statement (see also [CET]): 

LEMMA 5.1. - Ifu is a solution of the Euler equation on an interval I, then lu(tl) I = (u(t2) I 
,for all tl, t2 E I. 

Proof. - Let tl, t2 E I, and let t2 > tl. For every n, P,u is a locally absolutely 
continuous function with values in H. Hence, by (2.7), 

1Pnu(t2)j2 - (P,u(tl)(2 = 1” $\P&)l” d7 
tl 

I=? -2 
.I 

t2 (B(u(T),u(T)), I’,+)) dr 

II 2 
.I’ 

“(B(u(T), U(T)), (I - Qu(T)) dT. 
t1 
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Due to (2.3, the absolute value of the last expression is dominated by 

Since ‘~1 E LgC(I, V), the last integral is finite, and as we let n -+ co, we obtain the desired 
assertion. 0 

In this section we will show that the dynamics on M,, for any fixed n, is approximately 
Eulerian. Let u(t), where t E R, be a solution of the NSE for which u(O) = ug E M,\d. 
Then w = u/(u( satisfies 

(5.2) V = -u(A - ~~~u~~“)u - (~)B(‘u, u) + i(f - (f, u)u). 

Using the resealed time 

we denote 

v(T) = b(t)1 : TER 

and 
c(T) = m(t) , T E R. 

With these resealings, 5 has still the dimension of a velocity and T that of time. The 
equation (5.2) then becomes 

(5.3) &< + ZI(i.0 = F(T), 

where 

In the sequel we will show that the f’orcin, (1 Icnii /*‘(‘I’) in (5.3) satisfies a certain smallness 
condition as T + --oo (see (5.7) below). uhich will imply the following statement: 

THEOREM 5.2. - Let {Y’,}?;, c W I ~(2 11 .s(~(/I/c’/~~~c’ .SIIC./I tht liul,j,, Tj = --x, md let 
cj(T) = <(T + T,)for T E’R. TI I(‘/I’ (’ \~.v/.v (I .~///).~c,r///c~/l~‘~~ {T,, I }I”=1 of { Tj};“=, such thnt 
{<7;13}~zqo=1 converges in Lff,,.(W. /I) u/rr/ i/r ( ‘I,,( (R. I .‘) to CI nomero global solution cix. of 
the Euler equation (5.1). 

The statement immediately implies what lhc convergence of the subsequence also takes 
place in Goc(R Hweak), where I~,,.,.,,I, is ~hc space A equipped with the weak topology. 

Moreover, it will be clear from the proof that {<j},“=l is a bounded sequence in 
c([-ToJo], V’) f or every 5!;, > 0. Hence, by Aubin’s theorem, we may by passing to 
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a subsequence assume that the asserted convergence in the theorem holds in Lp,,(Iw, H) 
for all p E [l,oc). 

Proof. - Without loss of generality, we may assume that u(t) # 0 for t 5 0. 
Let {Tj}j”,i and {[j}j”=i b e as in the statement. We will first show that given any 
TO > 0 the sequences of functions {II<j(T)I(},“=, and {IA-“2(d/dT)C,(T)/}?‘1 are 
uniformly bounded for T E [-To, To]. The first sequence is uniformly bounded due to 

, v2X,}. Regarding the second sequence, we have by 

n”2$,(T) I CKjl II&II + ~ll~jll + ~lIc,l121~-‘i2~A 

+ $lA-l/Zfl + ~~A-‘~‘fl IICjII lA-1’25jl 

for all T E Iw. Since limr+,n(T) = cc as u. $ A, and since IA-1/2<(T)I 5 
(l/X;‘“)([(T)/ = V/X:/~ f or all T (except where u(T) = 0), we get the desired assertion. 
Now, by [CF, Lemma 8.41, we may assume by passing to a subsequence that {<j}zl 
converges to cm strongly in L&(W, H) and &,,(I%, V’) and weakly in LtO,(Iw, V). Clearly, 
c, E Lrc (R, H) n C( Iw , V’). It remains to prove that coo satisfies 

(5.4) C&-2) - Cm(n) = - IT2 B(L(T), L(T)) a! 
TT1 

for all 71,~ E lR such that ra 1 71. Let j E N, and fix rl, r2 E Iw for which T2 2 TV. Then 
-2 

” ((~2 + Tj) - ((~1 + To) = 
s 

F(T + Tj) dT - B(C(T + T,), (‘(T + T’)) dT. 
‘1 .I’ 71 

We will establish (5.4) by showing that 

(5.5) 
J 

n 
lim 

j-a3 
IF(T + TJ dT = 0 

71 

and 

(5.6) lim 
j’30 s 

T*B(C(T+Tj),C(T+Tj))dT= T’B(5,(T),C,(T))dT; 
Tl J’ 71 

the limit being taken in V’. First, we have 

(5.7) .I’ 
’ -cc lW)12rl(T) dT L 2 .I” $‘A - ll~ll”)<l” dT -cx 

+2 
.I 

’ -03 $lv2f - (f, 0<12 dT 

< 2v5 1” I(A - ~~~~~“)v[‘dt + 8(f12v3 1” & < cm. 
-cc o= 
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(Theorem 4.2 implies that the second term is finite, while by integrating (3.4), we get that 
the same holds for the first term.) Then, for any j E N. 

. /  

T2 

.I’ 

72 -  T.1 

IF(T+ Tj)l dT = 
IF(T) I  dT 

71 TI -T, 

IW)12rl(T) dT )“‘(l--; g2. 

As j, -+ 30, the first factor converges to 0 because of (5.7), while the second term converges 
to 0 since limT,-, q(T) = lim ti--30 ]~(t)] = 00. This gives (5.5). 

As for (5.6), we get with a help of (2.6), 

./I r2 A-l12B(<(T + ‘Tj), <(T + T,)) - A-‘/2B(<m(T),~oo(T)) 1 dT 
71 

s 

r2 
<c I@ + Tj) - L(T)11’2 II<@‘+ Tj> 

- (:(T),,‘/’ I<(T + T’)l”” IIC(T + Tj)ll”” dT 

.I’ 

72 
+C lLcw2 llLm”2 IW + w 

- Cm~~)11/2 IlC(T + T’) - Cca(T)111’2 dT 

and (5.6), the limit being taken in V’, follows immediately. 
For every function f: (-cc, 0] + V’, denote by 

a(f) = {uo E H : there exists a sequence Tl > T2 > . . . with 

jic T3 = --co such that ,/&k ]A-““(f(T’) - UO)I = 0} 

its a-limit set. Also, for every n, we introduce the sets 

A,= u 
uocM,,\d 

This set plays a role of the global attractor for the dynamics of the normalized solutions 
S(t)uo/lS(t)uol for uu E M,\A as t -+ --o;). We justify this with the following theorem 
which also underlines the connection with the Euler equation. 

THEOREM 5.3. - (i) A, is a relatively compact subset (in H) of{uo E H : (~01 = l} ; 
(ii) lim+, dist~~~(S(t)~o/lS(t)~o], A,) = 0 h w ere dist,, denotes the distance in V’ 

from a point to a set; 
(iii) A, & V and lluoll 2 A, for all ug E A,,; 
(iv) for every ug E A,, there exists a global solution u of the Euler equation such that 

u(t) E A, for every t E R. 
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Regarding (iv), we remark that it is not known whether solutions of the Euler equation 
are unique. Have we had uniqueness, (iv) would state that A, is invariant under the flow 
generated by the Euler equation. 

Proof - The theorem follows easily from Theorem 5.2 and Remark 3.8. 0 
Note that if u. E H is an eigenfunction of A, the constant function u(t) = ‘uo, for 

every t E W, is a solution of the Euler equation, due to B(ua, ua) = 0. Moreover, this 
solution is unique among the solutions starting at ua because of its regularity. This fact 
and Theorem 5.2 give the next theorem. 

THEOREM 5.4. - Let u(t), for t E W, be an arbitrary solution of the NSE such that 
u(0) = ug E M,\d. With the notation as in Theorem 5.2, there exists a sequence {Tj}~=, 
such that {~j}~zl converges in LfO,(W, H) and in C&-W, V’) to a stationary solution co3 
of the Euler equation (5.1) which is an eigenfinction of A. 

Clearly, this implies that P,H f~ o(S(.)ua/lS(.)z~\) # 0 for all ua E M,\d and thus 
also d, II P,H # 0. 

Proof. - Choose to E R such that u(t) # 0 for every t < to. Then the definition of M, 
implies supte(- m,t,Jl Ilw(t)ll < CXJ, and thus by (3.4) we get 

I . om/(A - Il~(t)ll”)4t)l’~t < cc. 

We can therefore choose a sequence tl > t2 > . . . with limj,, tj = --oo such that 

Now, note that limj-,, ll~(tj)11~ = XI, for some k E { 1,. . . , n} ; hence, 

lim \(A - Xk)v(tj)l = 0. j+oo 

Since aupjGN Ilw(tj)ll < 00, we may by passing to a subsequence assume that 
limj_,a Iw(tj) - 2ra( = 0 f or some ~0 E V. Since A is closed, we obtain Avo = Xkuo. 

Now, let 

j E N. 

Using Theorem 5.2, we may, by passing to a subsequence, assume that cj converge to 
a global solution of the Euler equation. Clearly, c,(O) = ~0, and by uniqueness we get 
cm(t) = wo for every t E W. 0 

For an illustrative example, we return once again to the equation 

ti+vAu=f 

discussed in Sections 1 and 3. All the constructions in this paper apply also to this case-we 
only have to take everywhere I3 = 0. Recall that for each n 

Mp = u. E H : u. - ;A-‘f E P,H 
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is the invariant manifold which is the analog of M,. Likewise, let dAlin = ( A-if/u} and 
AZ” be the counterparts of A and A, respectively. The role of the Euler equation is played 
by ti = 0. We are able to compute A; here. Let ~0 E ME”\AF. Then uo - A-if/v = y. 
for some nonzero ~0 E P,H. Since Ape = Xkyo for some k: E (1,. . , n}. we get 

Thus, 

and we obtain 

which is a compact subset of {ug E H : 1~01 = l} ( compare this with Theorem 5.3(iii)). 
It is not clear whether A, = &” for any n. 

6. A transitivity type property of the invariant sets M,, 

Theorem 4.1 implies F’,G = P,H for all n. We will show in this section that PG = PH 
for every orthogonal projector P in H which satisfies dim PH < 00 and PH 2 V. 
More generally: 

THEOREM 6.1. - Let T: V’ --f V be a jinite rank operator. Then there exists n E N such 
that TM,, = TH. 

Remark 6.2. - (i) It will be clear from the proof that there are in fact infinitely many 
n with this property. 

(ii) The theorem implies TG = TH. 
(iii) Theorem 6.1 also implies that given any m independent vectors ulr . , Y,, E V (m 

arbitrary) and any m numbers ~1,. . ! a,, E W there exists z E M, for some n such that 

(X;Vj)  = CEj * j = l,...,UL. 0 

The proof of Theorem 6.1 is a generalization of the argument used in the proof of (4.1). 
However, before the proof we need to establish some technical facts. 

Let T be an operator as in the above statement. Then 

TX = (2, sl)fl + . . . + (J.., g1c)fic 

for some linearly independent fr , . . , fk E V and some linearly independent gl, . . , Sk E 
V (k: = dimTH). We only have to consider the case TH = T*H, i.e., L{fl,. . . fk} = 
.C{gi, . . . , gk}, where AS denotes the set of linear combinations of elements from a set 
S. Indeed, if TH # T*H, we can find a finite rank operator ? with ?H = ?*H c V 
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such that P!,? = T for some orthogonal projector P; then TM, = ?H clearly implies 
TM, = TH. 

Another observation is that there exists 6 > 0 such that 

(6.1) llfll I WI2 > SETH. 

This is because all norms are equivalent on a finite dimensional subspace TH. Also, for 
every n, we have 

112 

(6.2) Ifl ) SETH 

whence 

(6.3) Ipnf, 2 (I- (hi,;)1'2)//l, f ETH. 

For any n E N for which m = m(n) = dim P,H > k, choose zpJ1, . . . , ~2) E P,H 
(m = m(n) = dimP,H) so that 

i,jE {k+1,..., m} 

and 
(&,)=o: iE{k+l)...) ?n}> jE{l)...) k}. 

Let also 

Tnz = (x, g&f1 + . . . + (~>Src)fic + (21zqx~l +. . . + (x,xqx~) ) :I: E H 

and recall that 

c,, = C x E v : 11x1(2 5 xn +2An+l IW} 

for all n. 

LEMMA 6.3. - There exist n E N and E > 0 such that 

(i) Ker T,, n C, = (0) ; 

(ii) /T,zl 2 eJxI for 5 E C,; 

(iii) T,,H = C{fl!. . . , fk,zf$,, . . . ,:1-$‘} C C,. 

Proof of Lemma 6.3. - (i) Let ~0 E Ker T, n C,,, for any fixed rl such that 
rn = dim P,H > k. Then 

(6.4) (x0. x) = 0 . .I’ E L 
{ 

q] . . . Qk. ,I!(()) .- . . 1,+1’ . . . . :r:p 
> 
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and in particular 

(6.5) (X(],X) = 0 . :I: E TH. 

We choose :TY)!. . . :E?’ such that :I:!~“. . . , ziz’ IS an orthonormal basis of P, H. First, 
we claim that if 

(6.6) 

then 

s < An+l, 

(63 PnTH = L $I,. . . J$) { > 
. 

Let II: E P,TH. Then .2: = PrT)lL(cyljl + .. + a!kfk) for some al,. . . , ok E R. Therefore, 

(x, xi’“‘) = (P&k& + ‘. + a&-k), $‘) = (&I + . ‘. + (u&-k, $‘) = 0 

for 1: = k + 1,. . . 7 m, whence z E L: 
{ 

zy’. . . ,x!$’ l 
. This shows P,TH C 

L 
{ 

xp’!. . . ~ xp’ 
> 

. Since G { P,fi(“), . . . ;Pn~in)} = P,TH, it remains to prove 
Ker P,, 0 TH = (0). Let f E Ker P,, n TH. Then 

by virtue of (6.1). Because of (6.6), we conclude f = 0, and (6.7) is established. 
Assuming (6.6), and thus (6.7) there exist f,‘“’ E TH (i = 1,2,...,k) such that 

p f!“’ = z!“’ Then 71 z t . 

for every i E {1,2,...,k}, where we used (6.5), (6.2), and (6.3). Together with 
this implies 

Since also x0 E C,, Lemma 3.4 implies 

rot.~76-~997-N~ 2 

(6.4), 
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Therefore, if 

(6.8) 

and if (6.6) is satisfied (according to (2.3) and (2.4), this happens for infinitely many n), 
we get 50 = 0 as desired. 

(ii) Fix any n for which (i) holds. Suppose that there is no t > 0 so that (ii) holds; 
then there exist x1, x2, . . . E C, such that 

(6.9) lXi( = 1 > iEN 

(6.10) 

Thus, also I/x~]~ 5 (A, + x,+,)/2. Passing to a subsequence, we may assume 
lirni,, [xi - 201 = 0 f or some 20 E V (see Remark 3.8). But then (6.9) and (6.10) 
imply [x0\ = 1 and T,xo = 0. Since C, is closed in H (see Remark 3.8), x0 E C,, and 
therefore x0 = 0 by (i). We arrived to a contradiction and hence established (ii). 

(iii) Fix any n for which 

(6.11) x n+1 - &I, L 25 

andletcrl,...,a, be arbitrary. Denote f = nlfi +. . . $ ~k.fli: and 2 = (YE+~:c~~~ +. . . + 
(X,X:). Then for t = 2X,/(X,+1 - A,) we get 

Ilf + XII2 I Ml2 + 2llfll lb:11 + 11412 5 (1 + 41fl12 + ( > 1 + ; 11412 

5 (1 + @If12 + 
( > 

1 + ; X,Ix12 = ;;I: ; ;;b1.112 + ^-+12+ x7, I$ 

2 n+1+ &I 
- 2 

(IfI” + I$) = Xn+12+ xn If + :I*. 

Hence, (i)-(iii) hold provided 12 satisfies conditions (6.6), (6.8), and (6.11). 
Now, we can conclude the proof of Theorem 6.1: 

0 

Proqf of Theorem 6.1. - Fix n E N and c > 0 provided by Lemma 6.3. In particular. 
T,H & &. First, we shall establish 

(6.12) T,,S(to)T,H = T,H , to > 0. 

Note that this is an analogue of Lemma 3.5 which claims (6.12) with T, replaced by 
P,. The proof of (6.12) is, except for some obvious changes, analogous to the proof of 
Lemma 3.5. (We substitute P, with T,, and l/(m + 1) with E; also, we use Lemma 6.3(ii) 
instead of Lemma 3.4.) We omit further details. 

Next, let po E T,H, and choose a sequence 0 > tl > t2 > . . such that 
limk,, tl, = -co. By (6.12), there exist sequences {uk}pE1 G H and {pk}~zo=l & T,H 
such that S(-tk)pk = ?& and Tnuk = yo for Ic E N. Our proof now almost completely 
follows the proof of Lemma 3.9. Passing to a subsequence, we thus obtain a global solution 
qthx such that U, E M, and T,u, = PO. This establishes T,M, = T,H. Now, if 
P is the orthogonal projector (in H) with the range L{fl, . . . : fk}, we get PT, = T. 
Therefore, TM, = TH, and this concludes the proof. 0 
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7. Open problems 

1. Theorem 4.1 implies that dF(M,, n BH(r)) > rnax{ dim PnH, OF} for all 1’ > 0 
and r), E N. Do we actually have d,(M, n BH (T-)) = rnax{ dim P,,H, do (A)} ? 

2. Is M, for large enough n an exponential attractor for the NSE? (See [EFNT] for the 
definition and properties of exponential attractors.) 

3. Is M,, for large enough 72. a manifold? Is it an inertial manifold ([FST], [CFNT])? 
4. How do the ratios JA%(t)J/Iu(t)(, h w ere N > l/2. behave for solutions u(t) on 

the sets M, as t -+ -CQ? 
5. If f = 0, we have by [FS I] and [FS2] a family of invariant manifolds Mr, characterized 

by the behavior of the Dirichlet quotients llu(t)JI/Iu(t)l as t + X. That is, for every 
n E (0) U N, we have 

J4h = wu{ u. E H\(O) : lim IIwhl12 
t+w IS(t)?hJ)2 E {&+I> &L+z; . . .}}. 

By Lemma 3.2 and Corollary 4.3, M,, C V\bfn for all n E NJ. What are the precise 
relations between the sets Ml: M2. . . and the manifolds Mi, M2, . .? 

6. Is the set 9, which is by definition the set of all initial data which lead to global 
solutions, dense in H? Note that a good answer in (4) may lead to a solution in (6). 

7. Do any of the properties described in this paper carry over to the NSE with Dirichlet 
boundary conditions? 
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