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DIRICHLET QUOTIENTS
AND 2D PERIODIC NAVIER-STOKES EQUATIONS

By Peter CONSTANTIN, Ciprian FOIAS, Igor KUKAVICA and Andrew J. MAJDA

ABSTRACT. — We show that for the periodic 2D Navier-Stokes equations (NSE) the set of initial data for which
the solution exists for all negative times and has exponential growth is rather rich. We study this set and show
that it is dense in the phase space of the NSE. This yields to a positive answer to a question in [BT]. After an
appropriate rescaling the large Reynolds limit dynamics on this set is Eulerian.
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1. Introduction and meotivation

Many partial and ordinary differential equations connected with fluid dynamics have
the structure

(1.1) 4+ vAu + B(u,u) = f,

where A is a closed operator on a suitable Hilbert space H, B(-,-) is a bilinear form,
and f € H is time independent. Examples of such equations are the Navier-Stokes
equations (NSE), the Kuramoto-Sivashinsky equation, and the Ginzburg-Landau equation
(see e.g. [T2]).

Naturally, the simplest special case is when the nonlinear term B vanishes. In this case
the spectral properties of A are intimately connected to the stable manifolds of (1.1). More
precisely, assume for simplicity that A is a closed positive linear operator with a compact
inverse, and let 0 < A\; < Ay < --- be its distinct eigenvalues. Then, for every ug € H,

u(t) = S(t)ug = =4 (uo -~ ’%—A_lf> + %A_lf

is the solution of (1.1) with B = 0 such that u(0) = S(0)ug = ug. Note that, for every
ug € H, S(t)uo converges to the global attractor A = {A~!f}. If | - | denotes the norm
in the Hilbert space H, we define

_ 1 |A1/2S(t)u0|2 /\n + /\n+1
(1.2) M, = AU{ug € H\A: lltlilfgop EOME < 5 .
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126 P. CONSTANTIN et al.

We emphasize that S(t)u, is required to be defined for all ¢ < 0. Then, for every n € N,
1, .,
M, =Su€H:uy——-A""feP,H;,
124

where P, denotes the orthogonal projector on the spectral space of A associated with
{A1,..., A\x}. Note that M,, consists precisely of those solutions S(#)ug which exist for
all t € R and whose norm increases slower than const - e**1tl as ¢ — —o¢, ie.,

(1.3) M, = {uo € H:|S(t)ug| = O("* ) as t — —oo}.

The definitions (1.2) or (1.3) make sense for any equation of the form (1.1) where S(t)
represents the solution map. However, in general, all one can expect is that M,, contains
the global attractor. Indeed, one can prove that for the the Kuramoto-Sivashinsky equation
and Ginzburg-Landau equation M, = A, ie., if a solution grows at most exponentially
as t — —oo, then it is necessarily uniformly bounded (see e.g. [K] and [DGHN]). It is
thus quite remarkable that for the periodic 2D Navier-Stokes equations the situation is
much closer to the linear case.

In the present paper we develop a theory regarding the invariant sets M,,. In Section 3
we show that the sets M, are rather rich: We prove that P, M, = P,H for every n.
Obviously, this implies that the Hausdorft {(and hence also the fractal) dimension of the
set M, intersected with any ball in H is at least dim P, H. We give a positive answer to
the following question of Bardos and Tartar ([BT]): Is S(¢)H dense for a fixed ¢ > 0? We
prove that even more [, S(t)H is dense, however in a weaker topology. In Section 4
we study the behavior of Dirichlet quotients |A/2u(#)|/|u(t)| for solutions u of the NSE
as t — —oo and use them to obtain a precise rate of exponential growth of solutions
as t — —oc. In Section 5 we study the dynamics on the invariant sets M,,. We show
that the normalized solutions u(t)/|u(t)| lead, as ¢ — —oo, to global solutions of the
incompressible Euler equation. This enables us to introduce attractor-type sets which are
invariant with respect to the Euler equation and attract the quotients w(t)/|u(t)| when
t — —oc for u(0) € M, \A. In Section 6 we discuss another density type property of the
invariant sets M,,. We conclude the paper with a list of open problems.

2. Functional form of the NSE and some known facts

We consider the Navier-Stokes equations (NSE) on Q = [0, L]?

%? —vAu+ (u-V)u+ Vp = f,
V-u=0,
u, p {1—periodic , / u =0,
Q
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where u: R?2 — R2, p: R? — R are unknown functions, and v > 0, L > 0, and f € L?*(Q)?
(which is Q-periodic and fQ f = 0) are given. We introduce spaces H and V as the
closures of

{v € L*(9)? : v is an Q—periodic trigonometric polynomial, V-v = 0 in €2, / v = 0}
Ja

in the (real) Hilbert spaces L2(2)? and H'(2)?, respectively. The sets H and V are also
Hilbert spaces with respective scalar products

2
(u,v):Z/ujvj, u,veH
=179

and

Ou; Ov;
((u,v)) = Z/@xkaxk u,v € V.

1,k=1

The corresponding norms are |u| = (u,u)?, foru € H, and ||lu|| = ((u,u))*/?, foru € V.
By the Rellich imbedding theorem, the natural inclusions i1: V' — H and io: H — V' are
compact, V' being the dual of V.

Let Pr: L*(Q)? — L%(2)? be the orthogonal projection (called the Leray projector) with
the range H, and let A = — P A be the Stokes operator, which is a positive operator in H
with the domain of definition D(A) = H2(Q)2( V. Introducing B(u,v) = Pr((u - V)v)
and & = Ou/0t, the NSE can be written as

(2.1) u+ vAu+ B(u,u) = f,

where we replaced Pp f with f. This equation is the functional form of the NSE, and
it is understood in V.

Classical theorems imply that, for every uw, € H, (2.1) has a unique solution
u(t) = S(t)uo for t > 0, which satisfies u(0) = uo and u € Cy([0,00),H) N
Cioc((0,00), V) N LZ ([0,00),V). (We always assume f € H.) If the solution u(t)
exists also for ¢ € [y, 0], where ¢y > 0, then it is still uniquely determined by uy = w(0)
(see [BT] or [CF, Theorem 12.2]); therefore, we still denote its value u(t) at t € [—tg,0]
by S(t)ug. Also, for any tp > 0, the solution operator S(tp): H — H is continuous;
similarly, S(¢o):V — V is continuous.

Now, we recall some spectral properties of A. First, A is a positive operator with
eigenvalues (k? 4+ k2)(2r/L)* where ky,k; € N and k2 + k2 # 0. We arrange them in

increasing order
9 2
(—;) =A< A<

In particular, the identity ||u|| = |A!/2u| (u € V) implies the Poincaré inequality
(2.2) lull> > Aiful?, weV.
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128 P. CONSTANTIN et al.

An important property regarding the spectral gaps is

(2.3) limsup (A, r1 — An) = 00,

—0C

(see [E] or [R]). Also, note that

2
Anst = An z(L'”) =X\, neN

and

(2.4) lim A, = o

n—o0

Regarding the bilinear form B, we will need the inequalities

(2.5) [(B(u,v),w)| < Clul*? lull?[Jo]l w2 [lw]|'/* . w,v,weV
and
(2.6) |ATY2B(u,v)| < Clul*? |lull"? [ o], w,veV.

Also, we will use the identities

(2.7) (B(u,u),u) =0, ueV
and
(2.8) (B(u,u), Au) =0, u € D(A).
Both can be obtained using integration by parts (see e.g. [CF]). The identity (2.7) implies

1d A
(29) 3l = () < o+
which, because of (2.2), shows that

d 1
2.10 —Jul* + v Ju)? < —|f%.
(2.10) Il Al < 1]
If » is defined on some interval [to,c0), the Gronwall lemma gives
Y /P —uh (t—
(2.11) [u(t)]? < Ju(t)Pe™ ) 2/\2( — MUy >y
also,
(2 12) ' (t)|2 > ' (t I2 vAi(to—t) |f|2 ( vAi(to—t) _ 1) 1<t
. u > |u(to)|e »——lﬂ/\% e , < tg,

provided u is defined on [t,#g]. The inequality (2.11) shows that (d/dt)[u(t)]* < 0
provided [u(t)| > |f|/vA;1. Similarly, (2.8) implies

(2.13) [ul|* + v|Au|* = (f, Au),

2dt|
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DIRICHLET QUOTIENTS AND 2D PERIODIC NAVIER-STOKES EQUATIONS 129

which gives

d 2 2 |f|2
Dl + g < 25
and thus
—VA} f 2 —VAL
QL) O S O+ Ea - e o

The NSE have a global attractor

A= {uo € ﬂ S(¢)H : limsup |S(t)uo| < oo}
t——o0

t>0
(2.15) —{we s 150w < Lt e}
>0 1
~{we ()50 I8l < 1 1 el
t>0 vAy

which is the smallest compact subset of H which attracts all the solutions. Global attractors
have been studied extensively in [BV], [CF], [H], and [T2]. The following properties will
be needed:

(i) A is a nonempty, compact, connected subset of H ;

(i) S(t)A = A for t > 0;
(iti) dr(A) < oo, where dp denotes the fractal dimension ([CFT], [FT)).
See [CF] or [T1] for detailed treatments of the NSE.

3. Density of trajectories of global solutions

Every solution u(t) = S(t)up of (2.1) defined for all ¢t € R is called a global
solution. Clearly, uy € H belongs to a trajectory of a global solution if and only if
ug € >0 S(t)H = G. Also, A C G, which shows that the union of all trajectories of
global solutions is nonempty.

It is illustrative to consider again the equation

UL+ vAu=f
briefly discussed in the introduction. For every wuy € H there exists a solution

u(t) = S"(tuo = e (uo — (1/v)A7'f) + (1/v)A7f such that w(0) = ug. This
solution is global if and only if

lin _ ), . _1‘_ ~1 aA
ug € G —{uOEH.uo ~A fe D)y,

a>0

where D(e4) is the domain of definition of the operator e®#. Note that G is dense in H.
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130 P. CONSTANTIN et al.

The following theorem, which treats the NSE case, is the main result of this section.

THEOREM 3.1. — The set §, which is the set of all uy € H for which S(t)uq is a global
solution, is dense in V.

In [BT] Bardos and Tartar conjectured that, for every ¢y > 0, S(to)H is dense in H ;
Theorem 3.1 shows that S(tg)H (and even G = (5, S(¢t)H) is dense in H equipped
with V' topology.

The main objects of study in this paper and in particular in the proof of Theorem 3.1,
are the sets

, IS(B)uoll® _ An + Anir
= : < .
M JQJ{“°EQ\A WSS Bugl? = 2

Clearly, we have

and
ACM; CM;C---.

If M!n are the analogous sets corresponding to the linear case, then
. 1
Miin = {uo €EH:uy—~-A"'fe PnH},
v

where P, is the orthogonal projector on the spectral space of A corresponding to
Aty Az, ..., A,. Note that | J07, MI® is dense in H.

Regarding the NSE case, we will show that | J7 , M,, is dense in H with the topology
of V'. The norm in V' is |A~1/2 .|

Theorem 3.1 will be proven after we establish a series of auxiliary results.

LEMMA 3.2. — Let a € (0,1) and T > 0 be arbitrary, and let u be a solution of the NSE
such that

|/]

v(Apy1 — Ap)min{a, 1 — a} ’

(3.1) u(t)] > te 0, 7).

If u(0) € V and

u(0)||?

|:uEO§]“2 < ad, + (1= a)rntr = Ana
for some n, then

u(t)||?
(3.2) |:u8:'2 SAna, tE0T]
and
2 2y PN e _ P

(33  lu@)f > (Iu(0>l +§T) Tear 10

Remark 3.3. — Lemma 3.2 and Section 2 obviously imply the following facts:
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DIRICHLET QUOTIENTS AND 2D PERIODIC NAVIER-STOKES EQUATIONS 131

(@) If ug € M,, and |ug| > 2|f|/v A1, then there exists a unique to = to(up) > 0 such
that iS(tQ)’Mol = 2|f‘/l/)\1,

1S(tuol > 21f1/vAr, 1 €[0,10)

nd ISl _ da+ A
Ug n n+1
< .
Sow =~ 2 Ll
(b) If up € M,\A and
2|/
t _— t<T
|S(t)uo| > o =0 <
for some T € R, then
o2

1S@uol> = 2

Proof of Lemma 3.2. — Assume first u(0) € D(A), and let v(t) = u(t)/|u(t)|. After
some calculations, we obtain from (2.9) and (2.13)

1d s (1 .
gl vl = iyl = (L= i)
< b+ Ll poipnf”
Hence,
d 2 24,12 lf|2
(3.4) gl o= lPel < o . teloT)
Since
(A~ A)v| > ({{gglk— /\n|)|fu| . Ae€R, veD(A)
we get
d 2 : 2 2 If(2
(3.5) gl + v (il olP = Xal) < 2 ve o,

If {|v(to)||> = Ana for some o € [0,T), then

Fik
vlu(to)[?
by (3.5). The right hand side is negative by (3.1), so (3.2) follows.

In order to prove (3.3), we use (2.9) and (3.2):

d

2
3.6 — 2 = — 2 > a2 Ifl
(36) 1= 2P 200 2 o ul? -

%“vlmm < = v(Ant1 = An)*(minfa, 1 - a})?

and (3.3) follows.
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132 P. CONSTANTIN et al.

Now, assume u(0) € V, and fix € € (0,7/2). There exist ¢',¢” € (0,¢) such that
oa—€ > 0, u(el) € D(A)’ IU(EI)HQ < /\n,oz—e” s and

/1

viymin{a — €', 1 - (@ - ¢")} ’

|u(t)] >

teld, T —¢€l.

Then [[v(t)]|? < An,a—e for t € [¢/,T — €] by the first part of the proof. As we let € — 0,

we get (3.2), while (3.3) directly follows from (3.2). O
We recall that P, is the orthogonal projector in H on the spectral space of A
corresponding to the eigenvalues Ay, Ao, ..., A, ; letalso @, = 1 — P,.

Lemma 34. — [If

/\n + )\n—l-l

Juol® < =

|uol?

for some ug € V and n € N, then |Qnup|? < Vu|Pouol? where v, = (Ani1 + An)/
(Ant1 — An), and

2/\‘n-}—l

2 < _Znal Pn 2.
’UO| - /\n—}—l - )‘n| uo‘
Proof of Lemma 3.4. — We have
1 1 An + A An F Angt .
. 2« " 2 < 2 0 n+1P 2 n n+ . 2
Quttol” < 3l Quull” < 5ol < FHTE Praof? + =55 Qe
and both assertions follow. O

LemMA 3.5. — Let py € P, H for some n. Then, for every tg > 0, there exists vg € P, H
such that P,S(to)vo = po.

For the proof we will need, in addition to the previous two lemmas, the following
well-known fact:

THEOREM 3.6 (Brouwer). — Let B(r) C R™ be a closed ball with center 0 and radius r. If
g: B(r) — B(r) is a continuous mapping, and if g(z) = « for all x € 0B(r), then g is onto.

Proof of Lemma 3.5. — Let T',,(r) = {ug € P, H : |ug| > r}. We will first show that
there exists

/]
. > ——
(3 7) o -~ 1/)\1
such that
(38) |PnS(t)’l.L0| > |p0| s Ug € F,l(ro) , te [O,to].

It is sufficient only to consider the case |pg| > 2|f|/vA;1. Choose any uy € P, H such that
|ug| > |pol|. It follows from (2.10) that there exists

2
7(up) = min {7’0 > 0: |P,S{1o)uo| = ;/l)\il} > 0.
1
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DIRICHLET QUOTIENTS AND 2D PERIODIC NAVIER-STOKES EQUATIONS 133

Note that ||uol|/|uo|? < (An + An+1)/2. Hence, by Lemma 3.2 (with o = 1/2),

An + An
IS (Euoll® < =S (ol . ¢ € [0,7(uo)]
e I
S(t)uo|? > |uole™*A+1* — gz el T(u)l

Lemma 3.4 now implies |Q,S(t)ug|? < ¥n|PS(t)uo|?, for ¢ € [0, 7(up)], whence

1
2 S 2

|PnS(t)uol” 2 %HIS(t)uOI

29 Tik
2 - : (lu0|26~4u)\n+1t _ 8V2/\2) , e [O,T(UQ)].
We fix any ro which satisfies (3.7) and
1 4 |f1?

(3.10) P (7'(2)(3 Anyito _ SN > \polz.

Let |ug| > 7o, and set t = T(ug) in (3.9):

4| f1? 2 1 9 —adarue) P
— > VAp417(U0) .
EY; | PSS (70)uol” = 1 Tp€ 8122

This and (3.10) imply to < 7(uo). Therefore, (3.9) holds for ¢ € [0, ¢], and (3.8) follows
from (3.9) and (3.10).

In order to apply Theorem 3.6, we will find a suitable g: P,H — P, H. First, we
choose a continuous function §:R — R such that §(z) = 1 for © < ro, and 6(z) = 0
for z > 2ry. Define

pol® >

g(ug) = PnS(0(|u0|)t0)u0 , ug € P H.

Note that (B (2r¢) N P, H) C BH(2r¢) N P, H (where BE(r) = {ug € H : |ug| < 7})
by (3.7) and by

swBir B, r2l iz
I//\l
Also, g is continuous, and it satisfies g(ug) = uo if |uo| = 2r9. By Theorem 3.6, there
exists vg € P, H such that g(vg) = po. Now, because of (3.8), we have |vy| < ro; thus,
g(vo) = PaS(to)uo = po. O
In the next lemma we provide the main ingredient for the construction of global solutions:

LemMma 3.7. — Let uy,us,... € H, and let t, > ty > 13 > --- be such that
lim, o0 £, = —00. Suppose that S(t)u; is a solution for t € [t;,00). Then the following
two statements hold:
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134 P. CONSTANTIN et al.

(a) If there is t € R such that limsup,_,_ ||S(t)ux|| < oo for all t < t, then there exists
U, € G and a subsequence {uy, }52, of {ux}32, such that

(3.11) lim [S(t)ug, — S(t)ue| =0, teR.
o0 :
(b) If
(3.12) lug| < M | keN

for some constant M, and if

(3.13) IS(te)u| 2 2fI/vAdr . k€N
with
/\n + )‘71
(3.14) IS uell® < =" (St )unl* . keN

2
for some fixed n, then there exists u, € M,, and a subsequence {ux;}32, of {ux}iZ,
such that (3.11) holds.

In the proof we will need the following elementary facts:

Remark 3.8. — If {u;}32, is a bounded sequence in V, and if limg .o [ux — uo] = 0
for some ug € H, then uy € V and |lup|| < liminfy o |Jukl|. Likewise, if {ug}32, is
a bounded sequence in V, and if limy_, oo |A™12(ugx — uo)| = 0 for some uy € V, then
up € V and [Jug|| < liminfy_, o ||uk]|- O

Proof of Lemma 3.7. - (a) Since the imbedding #,: V — H is compact, we may use the
Cantor diagonal process to find a subsequence {u;}$2; of {ux}2, such that the limits

hm S(tki)ukj =v; e H, 1 €N,

=00

(the limits being taken in H) exist, and such that t;, < t for j € N. Since S(t):H — H
is continuous for every ¢t > 0, we get

’Ui:S(tki_tk )'ij J<t, 4,5€N.

Letting uo, = S(—tx,)v1, wWe obtain
S(—te,)v; = U jEeN.

Finally, (a) follows from continuity of S.
(b) Without loss of generality, we may assume M > |f]/vA;. First, fix £ € N. As in
Remark 3.3(a), there exists a unique ay > ¢ such that |S{ax)ur| = 2|f|/vA1,

2
(3.15) swwl <2 iz a
and
An 4 An
(3.16) 1S (#)ux|? < ——2+—1|S(t)uk|2 . tE [tr, ax)
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Moreover, (3.6), (3.13), and (3.14) imply

TN
St < ( Ol + gl e 0

(3.17) AP P Y maon o)
V22 81/2)\2
= Ce —4vAn 1 (o) , te [tk-s”k]:

where C,, (5, ... are various constants. On the other hand, (2.14) and (3.16) give

/\n + /\n+1 4’f‘2 ,f!Z
2 vINET L2

(3.18) 1S (H)urll® < max{ } =Cy t > ay.

Note that an upper bound on «y is

1 VQ)\QM?__ lf|2
< —log —2——— 1 =1,
ap X I/)\l og 3(]([2 AM

which can be obtained from (3.12), (3.15), and (2.11). By this estimate, together with
(3.16) and (3.17), we get

An + An ,
L R
< 036_4V}‘7’+1(t-t‘“) R te [tk,ak].
This and (3.18) yield
|S@)uk||* < max{Cp, Cae™ A nrrl=tr)l ¢ > ¢

So, the assumptions of Lemma 3.7(a) are satisfied. Hence, we get (3.11) for u,, € G and
a suitable subsequence {uy, }‘]";1 of {ur}e2,. If liminfy .o ap = —o0, then (3.11) and
(3.15) imply |S(t)uc| < 2|f|/vAy for t € R, and thus u,, € .A. If on the other hand
liminfy .00 @ = @s > —o0, Remark 3.8, together with (3.11) and (3.16), gives

/\n + /\n+1

St usll®> <
IS (Eusell? < 2

IS(Buccl® . ¢ < an
and thus again u., € M,,. J
Theorem 3.1 will be an easy consequence of the following lemma:

LemMma 3.9. — If po € P, H, for some n, then there exists a global solution S(t)uc,
such that:

(a) Ups € M,

() Pouos = po;

(©) |Qntoo| < max{2|f|/vA1,v 1/2|po|} where Y, = (Ans1+ M)/ (Angr — An).

Before the proof, we will show that Theorem 3.1 is a direct consequence of Lemma 3.9:
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Proof of Theorem 3.1. — Let uy € H be arbitrary. For any n € N, Lemma 3.9 provides
u, € H for which S(¢)u,, is a global solution, P, u, = I’,uq, and

|Qnu,| < max{ ‘ﬂ,fy”/sz,LuU]}

All these facts imply
|A71/2(?Ln - ’U,[))l = |A—1/2Q,l(u,, — 'IL())'
< /\7_1-:-/12|Qn(un — ’1L0)|

- 2] (Aues )
<Al (|Qn“0| + maX{I—/'/\iJ, <h) IPnuol})

2|11 V2 }

L
]/\711/+1 (/\71,+1 - /\n)l/Qh 0]

< )\"i/l luol + max{

for all n. By virtue of (2.3) and (2.4), we obtain liminf, _.. [47"/2(u, — ug)| = 0, and
the theorem is proven. [l

Proof of Lemma 3.9. ~ First, note that (c) follows from (a) and (b): If |u..| < 2|f|/vA1,
then |Qnuo| < |ttoo| < 2|f|/vA1. If on the other hand |us.| > 2|f|/vA;, we get
/\'Il )\n
__.%.ilmx
by (a) and Remark 3.3(a). Lemma 3.4 and (b) then complete (c).

e l® < °

It remains to establish (a) and (b): Choose a sequence 0 > ¢; > £ > --- such that
limyg oo B = —oc. By Lemma 3.5, there exist wi,us,... € H and p;,ps.... € P, H
such that

S(~tx)pr = up , keN
and
(3.19) Poup =po , ke N.
Consider the following sequence of solutions:

Up(t) = S(t)uy . t >t
We consider two cases:

Case 1: |pip| < 2|f|/vA; for infinitely many k£ € N.
By passing to a subsequence, we may assume

If{

})k|< ke N.

Fix £ € N, and note

22 %1f1

) = < AY2|py| <
HUk‘(fk)” ”pkH-—/\n ka| I/Al
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The inequality (2.14) then gives ||[Ux(t)]| < 22| f|/vA; for t > t;, whence

2272\ f|

(3.20) U] < A 20RO € 22
VA /
1

. >t

According to Lemma 3.7, we may, by passing to a subsequence, assume that
(3.21) klim |Ur(t) — S(H)ue| =0, teR
for some uo, € G. Now, (3.19) and (3.21) imply (b), while (3.20) and (3.21) show that

|S(#)uoo| < 2/\1/2|f|/u)\§/2 for t € R. Because of (2.15) we get u,, € A and thus (a).

Case 2: |px} > 2|f|/vA; for infinitely many & € N.
By passing to a subsequence, we may assume

2|/

keN.
V/\1 <

|U(tr)| = |pe| >

Note that, for each k € N, either |ux| < 2|f|/vA or |ug| > 2|f|/vA; in which case
llull?/|uk)® < (An + An+1)/2 by Lemma 3.2. Thus,

2 2, 1/2
'uk|.<_max{yl*/\fllv()\—+—lj_];\‘) |po|}., keN

due to Lemma 3.4. Since also

1UEOI® _ llpel®
- < )\n y k eN
Ue(te)? Ipel® —

the assumptions of Lemma 3.7(b) are fulfilled. By passing to a subsequence, we obtain
Uss € M, such that (3.21) holds. So, (a) is valid, and (b) follows from (3.19) and (3.21).0

Remark 3.10. — At this point, we are unable to prove that G, which is the set of initial
data which lead to a global solution, is actually dense in the norm | - |. We can however
show that we have 0 € G, where the closure is taken in H.

Let € > 0 be arbitrary. Choose n so that

o0l
V(A"+1 — An) -

and
(3.22) dim P, H > dp(A).

We claim that there exists ug € M, \A such that |ug| < €. Indeed, suppose that this is
not true. Then, by Remark 3.3(b),

fuoll® 2w+ Ansa

(3.23) |uol? 2 ’

Ug € Mn\A
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and
(524) |’U,()| > €, Uy € Mn\.A.

Consider the set

. 2
S: pean|p‘2§M€_ .
2/\11+1

Note that P, M,, O S and P, (M,\A) NS = @: The first fact follows from Lemma 3.9,
while if ug € M, \A, we have by Lemma 3.4, (3.23), and (3.24)

P )\‘n 1~ >\n p (/\n—H — /\71,)62
P, 2y gl Tmg, 2y 20l T AT
| Pougl” > ) |uol” > s
Hence, °,,A D S, and dp(S) = dim P, H contradicts (3.22). O

4. Further properties of the invariant sets M,

For n = 1,2,..., let

b At
C, = {;1; eV x| < “i?‘“ill"Q}

Also, recall that B¥(r) = {uy € H : |ug| < r}.

THEOREM 4.1. — For each n € N, M,, is a connected, locally compact subset of H, and

(4.1 P M, =P,H;
moreover,
2|f)
. n - H — T
(4.2) M, CB (I/M)Uc,

Proof. — The equality (4.1) is already contained in Lemma 3.9, while (4.2) follows from
Remark 3.3(a), (2.11), and (2.15). It is also easy to check that every S-invariant set which
includes A is connected.

Since A is compact (in H), it only remains to check that every sequence uy, us.... €
M, \A such that

sup up| < M <
keN

for some M, has a subsequence converging to an element in M,,. Due to

lim, . o |S(t)ux] = oo for & € N, we can find a sequence t; > t; > t3 > --- such
that limg_,o ¢, = —oo and infgen [S(tx)ur] > 2|f|/vA1. An application of Lemma 3.7
concludes the proof since (3.14) follows from Remark 3.3(a). ]

THEOREM 4.2. — If u(t) = S(t)ug (t € R) is a global solution (i.e., uy € G), and if
ug ¢ A, then exactly one of the following two possibilities occurs:
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{a)

- u@®lP
(4.3) t_l}r_noo PO An
for some n, in which case lim,,_« (log |u(t)])/|t] = vAn;

(b)
(4.4)

in which case lim;_, _, (log|u(t)|)/|t| = oc.
This theorem readily yields the following new characterization of the invariant sets M, :

CoROLLARY 4.3. — For each n € N, we have

M, = {up € G : 1S(t)uo| = O(eM+Ialtly as ¢ — —00,Ve > 0}
= {ug € G : |S(t)uo| = O(erCntrnsdltl/2y a5 ¢ — o0}

U 2
- AU{UO € g\A:tEIElm%;TLO—:L— € {Al,)\Q,...,A,n}}

log |S(t

|t| G{V/\l,V/\Q,...,I//\n}}.

Proof of Theorem 4.2. — For simplicity, we introduce v(t) = u(¢)/|u(¢)|. Lemma 3.2
shows that, for any a > 0, liminf; ,_ |[v(t)|| < @ implies limsup, ,__ |[v(t)]| < a.
Therefore, lim;_,_ ||u(t)]| € [0, 0] exists.

Suppose that this limit is finite. Note that lim,_, . |u(¢)| = oc since ug ¢ A ; therefore,
(3.5) implies

/P2

d
0 < imoup vl < Komsup s —vigmint (] 01 - Ao

>2
This gives (4.3) for some n.
Assume (4.3), and fix ¢ > 0. There exists {; € R such that

= —V(min‘ lim |Jv])* — A
neN |[t— -0

A= < loOIIP< A4+ )N, t<to
Therefore, by (2.9),
d
(4.5) EIUF = —2v|v|*|ul® + 2(f, u)
< =201 — v, |ul® + 2| f| |u|
2
< =2(1 = ewhna|ul® + ev X, |ul? + ki
v,
_ o, P
= —(2-3e)vA|ul® + ——, t <t
VA,
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and similarly

d
(4.6) = lu* > =201+ pAdful® - 21f] ful
> =201+ e lul? — evA,|ul? - MJ—Z-
B " " VA,
= @esgmz- ML <y
" VA, C=

From (4.5) and (4.6) it follows

(1 - :—));)u)\n < liminfkigﬁlg)—| < limsup lggﬂ?)_l < (1 + :—sf)v)w

2

I 1] oo |t

Letting € — 0, we get lim,_, . (log[u(?)])/[t| = vAn.
Now, assume (4.4). For each n € N and € > 0, there exists ¢, € R such that

”'U(t)”2 > (1 - 6)/\71 s t < 1.

As above,

liminfw >11- ﬁ VAg.
t——oco |£] 2

Since n € N and € > 0 were arbitrary, we obtain lim,_, . (log |u(t)])/|t| = cc.

O

If u is a global solution such that u(0) ¢ A and lim,_ _ . [Ju(?)||?/|u(t)|? < oo, then
Theorem 4.2 guarantees that ||u(t)||?/|u(¢)[* and log|u(t)|/|t| converge to A, and vA,
respectively, for some n, as ¢ — —oo. The next theorem estimates the convergence rates

of both quantities.

THEOREM 4.4. — If w is a global solution such that u(0) ¢ A and if

limy—, — oo [Ju(t)]|?/|w(t)|? = A, for some n, then the following statements hold:
(a) We have

(@)l W
(4.7) lingop ( BOE An e < 00
and

—_— Ol
(4.8) lggl_lgj( (t)2 An )t > —o0.

(b) For every y > 1,
(4.9) lim sup |u(t)[e”** < oo
t——o0

and
(4.10) lim inf fu(t)| [t]He’ > 0.
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Theorem 4.4 clearly implies the following improvement of the first characterization of
M., given in Corollary 4.3:

COROLLARY 4.5. — For each n € N, we have
M, = {ug € G : |S(thue| = O(e*) as t — ~oo0}.

Proof of Theorem 4.4. — Denote v = u/|ul, and fix € € (0,1/2).
(a) Choose to € R so that |u(to)| = 2|f|/vA1. Then (2.12) implies

(4.11) lu(t)|? > Cqe™Mt ¢ < iy,
where C; = (3|f|?/v?A%)e” it Integrating (3.5) between —oo and ¢ and using (4.11),

we obtain

t 2
4.1 HIIF = A < ME g < gyert t<
(412) ol =A< [ i <ot i<t

since lim;_, _o. ||[v(¢)]|> = An. This gives (4.7).
Now, choose tg € R so that

(An—l + )‘n)/z < Hv(t)||2 < (An + )‘n+1)/2 ) t< o
and (4.11) hold. Then y = ||[v||*> — A, satisfies

|fI?

vAit
lllu(t)I2 S C6€ ! s té to.

(4.13) g(t) + vyP(t) <

We distinguish three possibilities:
Case I: There exists t; € R such that y(t) < —(Cg/ev)/2ev1t/2 for t < t;.
Then (4.13) implies

(4.14) §(t) + (1 = ry*(t) <0

for t < t; whence

1
(I-ulti— 1) —y(t) T

y(t) > 1<ty

and (4.8) holds.

Case 2: There exists ¢; € R such that y(t) > —(Cs/ev)/2e**1t/2 for t < t;.
In this case (4.8) follows immediately.

Case 3: None of the cases 1 or 2 occurs.
Let t; < to < tg be such that

06 1/2 I/)\1t/2
y(t) < — o € ; t € [t1, o]
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and assume that when ¢ = ¢; or ¢t = t,, we have the equality sign. Then we have (4.14)
for t € [t1,12], and thus

1

u(t) 2 - (L —e)v(te — t) + (er/Cg)t/2e—rhit2/2 °

t € [t1,1s].

Choose t; < min{0,to} so that

ew\*
(1-ewt+ (C—> MU >0, <l
6

Then

y(t) > t € [t o]

(1—ewt

provided ¢, and ¢, are chosen so that ¢, < #{,. This proves that in Case 3

1 Ce H2 Art/2
y(t) >mind ——— [ 28} emrzl oy
y(t) 2 min (1-et (El/) ¢ =0

for a suitable t; < ¢ , and (4.8) is established.
(b) Using (2.9), we get

1d, 20,42 _ (f
5 g el + Pl = (Fow) 2 =11l

which because of (4.12) leads to
d vArt g
(41‘5) E'“l_*_u(/\'n_{_CSG )lul 2> _'[fl 3 t < .

Then .
|u(t)lSK’u(to)|€“(t“"“‘”+\fl/ ecmellgr -t <ty
t

where

C
() = VAt + —ev Mt
Al

Using the estimate |(Cs/\;)e?*!| < C; for t < t;, where C; is a suitable constant,
we obtain

lu(t)] < Cee™*t,  t<tg

which concludes the proof of (4.9).
Let ¢ > 1 be arbitrary. The proof of (4.8) shows that

oY% = A > % L t<t,
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for a suitable to < 0 (possibly different from above). Similarly as we obtained (4.15), we get
d
Sl + (e + Bl <1l <t

Therefore,

t
lu(t)]erAntrrloeltl > g (g, )|evAntitulosital _ |f|/ ' eVAnTHulog 7| g0
t

t
> |u(t1)|ev>\nt1+u10glhl _ Ifl/ ' eVAnTplog|T| dr.
—00

provided ¢ < t; < ty. We may assume that ¢, is chosen so small that we have (4.11) and
ploglt] < —wvAit/4 for t < to. Then
t
B e Y
,f’ eu()\n—)\l/-’l)tl
v(A, — A /4)

if ¢+ < t; < to. The last expression is positive for small enough ¢;, and (4.10) follows. [

— Ci/Qeu(Anw)\l/Q)tl +uploglir]| _

5. Eulerian dynamics on the invariant sets A,

We will consider certain weak solutions of the Euler equation 4+ B(u, ) = 0. A function
u is a weak solution of the Euler equation on an interval [ if u € LS (I, V)NC(I, V') and

ty
(5.1) w(ts) — u(ty) = / Blu(r)u(r))dr . titrel
Jt
in V', Note that v € L2 (I, V') implies the existence of the integral in V. Therefore, (5.1)
implies that u: I — V" is locally absolutely continuous. Using the Galerkin approximation,
one obtains the following existence theorem: For every initial datum uo € V' there exists

a solution = of the Euler equation on I = R such that u(0) = wug and

[ 1utoear

for every t € R. Also, one can prove the following statement (see also [CET]):

< Jt] luoll®

LEMMA 5.1. ~ If u is a solution of the Euler equation on an interval I, then |u(t,)| = |u(t2)|
Jor all ti,ts € 1.

Proof. — Let ty,t; € I, and let ¢ > ¢;,. For every n, P,u is a locally absolutely
continuous function with values in H. Hence, by (2.7),

g ,
/t1 E'Pnu(*r)l dr

= —2/ 2(B(u(T),u(T)),Pnu(T)) dr

tL

]

| Pru(te)|* — |Pou(ty)]?

= 2/ ’ (B’(u(’r)7 u(7)), (I ~ Pn)u(T)) dr.

t)
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Due to (2.5), the absolute value of the last expression is dominated by
t2
20/ ()2 ()P = Pa)u()[M2I( = Po)u(r)|'? dr
ty

20 (* -
<< [ W) b
An+1 23

Since u € L{3.(1,V), the last integral is finite, and as we let n — oo, we obtain the desired
assertion. d

In this section we will show that the dynamics on M,,, for any fixed n, is approximately
Eulerian. Let u(t), where ¢ € R, be a solution of the NSE for which u(0) = uo € M,,\A.
Then v = u/|u| satisfies

(5.2) 0=—MA—WWM—mwwwHT%U—UwWI

Using the rescaled time

1 t
T:~/|u(r)|d’r, teR
V.o
we denote
n(T) = |u(t)] , TeR

and
TY = vul(t) . TeR.

With these rescalings, ¢ has still the dimension of a velocity and 7' that of time. The
equation (5.2) then becomes

1 o
(5.3) L+ B = F(T),
dT

F(T) = = (74 = [P+ 0 = (.00

In the sequel we will show that the forcing term /7°(7") in (5.3) satisfies a certain smallness
condition as T' — —oc (see (5.7) below). which will imply the following statement:

THEOREM 5.2 — Let {T;}72; C R be a sequence such that limj oo Ty = —oc, and let
G(T) = T + T;) for T € R. There exisis a subseqnence {T), 152, of {1152, such that
{Cn, 132, converges in Ly (R AT and in (', (R.V7) 10 a nonzero global solution (. of
the Euler equation (5.1).

The statement immediately implics that the convergence of the subsequence also takes
place in Cioc(R, Hyeax ). Where 1.\ is the space I equipped with the weak topology.

Moreover, it will be clear from the proof that {(;}52, is a bounded sequence in
C([~Tv,Ty), V') for every T, > 0. Hence, by Aubin’s theorem, we may by passing to
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a subsequence assume that the asserted convergence in the theorem holds in L} (R, H)

for all p € [1,00).

loc

Proof. — Without loss of generality, we may assume that w(t) # 0 for ¢ < 0.
Let {T;}32, and {(;}32; be as in the statement. We will first show that given any
To > 0 the sequences of functions {||¢;(T)|1}52, and {|A~/2%(d/dT)(;(T \} are
uniformly bounded for T' € [—Tp, Tp]. The first sequence is uniformly bounded due to
limp_,_ o IC(D* € {¥*\1,...,v2\,}. Regarding the second sequence, we have by
virtue of (5.3) and (2.6)

2 1
| -2 4 g(T)] < Ol HIGH+ 261+ SGI71A7 26
ARV IN SRy Sy oy
F AT AT 1A

for all T € R. Since limp_,_ oo n(T) = oo as uy ¢ A, and since |[A~V2((T)| <
1//\1/2)|§(T)| = 1///\1/2 for all T' (except where u(T') = 0), we get the desired assertion.
Now, by [CF, Lemma 8.4], we may assume by passing to a subsequence that {(;}32
converges 0 (oo strongly in L2 (R, H) and C,.(R, V') and weakly in L2 (R, V). Clearly,
(o € L.(R,H) N C(R,V’). Tt remains to prove that (., satisfies

loc

(5.4 Goor2) = Gulr) = = [ B{Gu(T), GoulT)) dT
for all 74, 75 € R such that 7 > 71. Let § € N, and fix 7, 75 € R for which 7 > 7;. Then
C(me +T;) — ¢(m1 + To) :/ F(T +1T;)dT —/ B(C(T+Tj),<(T+Tj)) dT.

We will establish (5.4) by showing that

Jj—oo

(5.5) lim / |F(T +T;)|dT =0

and

T2

6.0 Jin [ BT+ LT T) AT = [ B (Gl o) ar
the limit being taken in V’. First, we have

(5.7) / \F(T)(T) dT < 2 / %KVZA—IICIIQ)CIQdT

—o0 —ooO
w2 [ W= ogtar

0 0
<2 / (A = [[o]2)ef? dt + 8] f[2° / # <.

oo (D)
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(Theorem 4.2 implies that the second term is finite, while by integrating (3.4), we get that
the same holds for the first term.) Then, for any j € N,

[ iresmyar= | "Ry ar

=T

- , 1/2 72Ty g 1/2
5</ IF(D) n(T)dT) (/T Rﬁ) |

As j — oo, the first factor converges to O because of (5.7), while the second term converges
to 0 since limr_, oo 9(7T") = lim,—, o |u(t)| = oo. This gives (5.5).
As for (5.6), we get with a help of (2.6),

T1

<0 [Tl + 1) - DT +T)
GG + T2 lG(T + Ty T
+0 [ I D ITI e(T + 7)
TR T + 1)~ G2 dT

ATVB(UT + 1;),C(T +T3)) = A2 B(Cu(T), Goo(T)) | T

and (5.6), the limit being taken in V', follows immediately. [
For every fanction f:(—oc,0] — V', denote by

alf) = {uo € H : there exists a sequence Ty > T > - -- with

lim T} = —oo such that lim |A™Y2(f(1}) — u)| = 0}
J—0

j—roo
its «-limit set. Also, for every n, we introduce the sets

A= U “(SE@ZZ;)-

ug EMn\A

This set plays a role of the global attractor for the dynamics of the normalized solutions
S(t)uo/|S(t)uol| for ug € M,\A as t — —oo. We justify this with the following theorem
which also underlines the connection with the Euler equation.

THEOREM 5.3. — (i) A,, is a relatively compact subset (in H) of {ug € H : |ug| = 1} ;

(ii) lim¢_, o disty (S(t)uo/|S(t)upl, Ay) = 0 where disty: denotes the distance in V'
from a point to a set;

(iii) A, CV and ||uol| < A, for all ug € A, ;

(iv) for every ug € A, there exists a global solution u of the Euler equation such that
u(t) € A, for every t € R.
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Regarding (iv), we remark that it is not known whether solutions of the Euler equation
are unique. Have we had uniqueness, (iv) would state that A4, is invariant under the flow
generated by the Euler equation.

Proof. — The theorem follows easily from Theorem 5.2 and Remark 3.8. |

Note that if ug € H is an eigenfunction of A, the constant function u(t) = wy, for
every ¢t € R, is a solution of the Euler equation, due to B(ug,u) = 0. Moreover, this
solution is unique among the solutions starting at ug because of its regularity. This fact
and Theorem 5.2 give the next theorem.

THEOREM 5.4. — Let u(t), for t € R, be an arbitrary solution of the NSE such that
u(0) = up € M, \A With the notation as in Theorem 5.2, there exists a sequence {T;}32,
such that {(;}32, converges in L}, (R, H) and in Cioo(R, V") to a stationary solution (.,

of the Euler equation (5.1) which is an eigenfunction of A.
Clearly, this implies that P, H N a(S(-)uo/|S(-)uel) # @ for all ug € M,,\ A and thus
also A, N P, H # 0.

Proof. — Choose t, € R such that u(t) # 0 for every ¢t < ty. Then the definition of M,,
implies Supye(_ o4, [0(2)]] < oo, and thus by (3.4) we get

/0 (A = ()P df < oo.
We can therefore choose a sequence 1 > tp > -+ with lim; . t; = —00 such that
Jim [(A = [lo(t;)[*)v(t;)] = 0.
Now, note that lim; . ||v(¢;)||* = Ax for some k € {1,...,n}; hence,
lim (4= AeJu(t;)| = 0.
Since sup;en ||v(t;)]l < oo, we may by passing to a subsequence assume that

lim; o |v(t;) — vo| = O for some vy € V. Since A is closed, we obtain Avy = Aevyp.
Now, let

1

T ==
v

M

t;
/|u(7)|d7, jeN.
0

Using Theorem 5.2, we may, by passing to a subsequence, assume that {; converge to

a global solution of the Euler equation. Clearly, (,(0) = v, and by uniqueness we get

Coo(t) = g for every t € R. a
For an illustrative example, we return once again to the equation

u+vAu=f

discussed in Sections 1 and 3. All the constructions in this paper apply also to this case—we
only have to take everywhere B = 0. Recall that for each n

. 1
Ml;“z{uoeH:uo—;A—lfePnH}
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is the invariant manifold which is the analog of M,,. Likewise, let Al = £ 4-1f /1) and
Ali" be the counterparts of A and A, respectively. The role of the Euler equation is played
by @ = 0. We are able to compute A" here. Let ug € MU\ A%, Then ug— A~ f /v = pg

for some nonzero py € P, H. Since Apg = Agpo for some k € {1,...,n}, we get
Slin + —vApt A~l g
i o W0, e Pk AT b
t=oo [Shn(H)ug|  t—oo [vemvAetpy + AZLF] [po]
Thus,

(jst) = (i)

Alin = {EI;ET ‘po € PnH\{O}}

which is a compact subset of {uy € H : |ug| = 1} (compare this with Theorem 5.3(iii)).
It is not clear whether A, = A" for any n.

and we obtain

6. A transitivity type property of the invariant sets M,

Theorem 4.1 implies P,,G = P, H for all n. We will show in this section that PG = PH
for every orthogonal projector P in H which satisfies dim PH < oo and PH C V.
More generally:

THEOREM 6.1. — Let T: V' — V be a finite rank operator. Then there exists n € N such
that TM,, = TH.

Remark 6.2. — (1) It will be clear from the proof that there are in fact infinitely many
n with this property.
(ii) The theorem implies TG = TH.

(iii) Theorem 6.1 also implies that given any m independent vectors vy,..., v, € V (m
arbitrary) and any m numbers «aq, ..., o, € R there exists x € M,, for some 7 such that
(z,v;) = ay . j=1,...,m. O

The proof of Theorem 6.1 is a generalization of the argument used in the proof of (4.1).
However, before the proof we need to establish some technical facts.
Let T be an operator as in the above statement. Then

Tz =(x,q1)f1+ -+ (z.9x) fx

for some linearly independent fi,..., fi € V and some linearly independent g;,...,gx €
V (k = dimTH). We only have to consider the case TH = T*H, i.e., L{f1,.... i} =
L{g1,-..,9x}, where LS denotes the set of linear combinations of elements from a set

S. Indeed, if TH # T*H, we can find a finite rank operator T with TH =T*HCV
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such that PT = T for some orthogonal projector P; then M, = TH clearly implies
™M, = TH.
Another observation is that there exists § > 0 such that

(6.1) Ifl<olf*,  feTH.

This is because all norms are equivalent on a finite dimensional subspace T H. Also, for
every n, we have

1 1 5\
62 10~ PSS =A< Sl (57 ) A g

whence

5 \ 12
(6.3) |Pnf|z<1—(A ) )|f|, fern.
n+1

For any n € N for which m = m(n) = dim P,H > k, choose xi’fgl, o2 e P.H

(m = m(n) = dim P, H) so that

(m(">x§n)) =6, 4,j€{k+1,....,m}
and
(m§">,fj)=0» i€{k+1,...,m}, je{l,... k}.
Let also

Tox=(z,91)fr+ -+ (z,91) fr + (x,ngl)xg)l 4o (:1@1175?)3;&? , wxcH

and recall that

C, = {w eVl < &&+—2)\Tf+—l|xl2}

for all n.

LEMMA 6.3. — There exist n € N and € > 0 such that
(i) KerT,, N C, = {0};

(ii) |Thx| > €lz| for z € Cp;

(iii) T, H = .c{fl,...,fk,xg’jjl,...,m&”} c e,

Proof of Lemma 6.3. — (i) Let 9 € KerT, N C,, for any fixed n such that
m = dim P,H > k. Then

(6.4) (ro.2) =0 . €T E E{gl ..... gA..:er‘,';L)l. . ,:17,5,',1)}
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and in particular
{(6.5) (xg,2) =0, x€TH.

We choose (... . 2" such that z{".... 2% is an orthonormal basis of P, H. First,
we claim that if

(6()) é < /\n+15
then
(6.7) P,TH = z{:cg"), o ,x,i”)}.

Let z € P,TH. Then x = P, (a1 f1 + -+ + ap fr) for some ay,...,a; € R. Therefore,
(x’$§n)) = <Pn(a1f1 +o akfk)@ﬁ'”) = (Oélf1 +- 4 akfk,;c,E")) =0

for + = K+ 1,...,m, whence z € E{zgn),...,xin)}. This shows P,TH C
L :L'%"),...,x,(cn)}. Since L{Pnfl("),....,Pnf,E")} = P,TH, it remains to prove
Ker P, N'TH = {0}. Let f € Ker P, " TH. Then

A1 [P = Ania|(T = PSP < = PSP = NFI1P < 8151

by virtue of (6.1). Because of (6.6), we conclude f = 0, and (6.7) is established.
Assuming (6.6), and thus (6.7), there exist fi(") € TH (i = 1,2,...,k) such that
Pof™ = z!™. Then

(o) = () = o )

5 \ 12
< faal(r - Ps < (5) b
>\n+1
(6/Ang1)'/? (n) _ (8 )
= 1= (6/Any1)? Fofi | ool = 1= (8/Aps1) /2 ol
51/2
= 57—, 1%l

i
for every 1 € {1,2,...,k}, where we used (6.5), (6.2), and (6.3). Together with (6.4),
this implies

|Poo| =

|zol-

k

. 51/2
> (rus ot <
=1

- 1/2
o

m
5" (st
i=]

Since also zy € C,, Lemma 3.4 implies

2/\n+1 1/2 2/\n+1 )1/2 §1/2
<{— Pzl <k Zol.
IxOI N (An+1 - )\n) l :EOl - )‘n+1 - ’\n )\:L/fl - 61/2I‘EO|
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Therefore, if

2/\n+1 1/2 61/2
(6.8) k(An+1 s ) A <1

and if (6.6) is satisfied (according to (2.3) and (2.4), this happens for infinitely many n),
we get o = 0 as desired.
(ii) Fix any n for which (i) holds. Suppose that there is no ¢ > 0 so that (ii) holds;

then there exist z,,%2.... € C, such that

(6.9) lzi| =1, 1 €N
and

(6.10) ll}gl@ | T x| = 0.

Thus, also ||z;|| < (A + Auy1)/2. Passing to a subsequence, we may assume
lim; o |; — 29| = 0 for some zo € V (see Remark 3.8). But then (6.9) and (6.10)
imply |zo] = 1 and T,z = 0. Since C,, is closed in H (see Remark 3.8), zy € C,, and
therefore o = 0 by (i). We arrived to a contradiction and hence established (ii).

(i) Fix any n for which

(6.11) Angr— Ap 226
and let ay, . . ., ., be arbitrary. Denote f = a3 fi +---+arfr and z = (Yk+1-’l?§£21 4+ 4+
(1,,,,."1:5,?). Then for € = 2\, /(A1 — M) we get

I|f+~L||2<||f||2+2l|f|1||ﬂﬂll+||»17|12 L+ olsI* + ( l)HﬂvH2

Angl + An nt1 + A
<L+ S| f + Anlaf? = SR 4 Augt
An+l - 2
< 2 (1 g fof?) = Attt An w|2.
Hence, (i)-(iii) hold prov1ded n satisfies conditions (6.6), (6.8), and (6.11). Ol

Now, we can conclude the proof of Theorem 6.1:

Proof of Theorem 6.1. — Fix n € N and ¢ > 0 provided by Lemma 6.3. In particular,
T,H C C,. First, we shall establish

(6.12) T.S(to)ToH = T,H,  to> 0.

Note that this is an analogue of Lemma 3.5 which claims (6.12) with 7, replaced by
P,. The proof of (6.12) is, except for some obvious changes, analogous to the proof of
Lemma 3.5. (We substitute P,, with T, and 1/(~y,, + 1) with €; also, we use Lemma 6.3(ii)
instead of Lemma 3.4.) We omit further details.

Next, let po € T,H, and choose a sequence 0 > t; > ity > --- such that
im0 tx = —00. By (6.12), there exist sequences {ux}ye, € H and {px}32, C T, H
such that S(—tx)pr = ux and T,,ur, = po for k € N. Our proof now almost completely
follows the proof of Lemma 3.9. Passing to a subsequence, we thus obtain a global solution
S(t)us such that us, € M, and T, us = po. This establishes T, M,, = T,,H. Now, if
P is the orthogonal projector (in H) with the range L{f,.... fix}, we get PT, = T.
Therefore, TM,, = TH, and this concludes the proof. O
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7. Open problems

1. Theorem 4.1 implies that dr(M,, N B (r)) > max{dim P,H, dr(A)} for all r > 0
and n € N. Do we actually have dr(M,, N B (r)) = max{dim P,H,dr(A)} ?

2. Is M,, for large enough n an exponential attractor for the NSE? (See [EFNT] for the
definition and properties of exponential attractors.)

3. Is M,, for large enough n a manifold? Is it an inertial manifold (JFST], [CENT])?

4. How do the ratios |A“u(¢)|/|u(t)|, where o > 1/2, behave for solutions u(t) on
the sets M,, as t — —oo?

5.1f f = 0, we have by [FS1] and [FS2] a family of invariant manifolds A, characterized
by the behavior of the Dirichlet quotients |lu(t)||/|u(¢)| as ¢ — oo. That is, for every
n € {0} UN, we have

M, = {0} ] uo € H\{0} : lim M € { M1 Angz, -} b
t—eo I

lS(t)'U/g
By Lemma 3.2 and Corollary 4.3, M,, C V\M, for all » € N. What are the precise
relations between the sets M, Mo, ... and the manifolds My, M, ...?
6. Is the set G, which is by definition the set of all initial data which lead to global
solutions, dense in H? Note that a good answer in (4) may lead to a solution in (6).
7. Do any of the properties described in this paper carry over to the NSE with Dirichlet
boundary conditions?
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